引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 869次   下载 176 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于多核并行计算的超燃冲压发动机一维模型实时性研究
杨柳1,史新兴2,刘小勇1,李岩1,苏承毅1,王明杰1
1.北京动力机械研究所,北京 100074;2.中国航天科工飞航技术研究院,北京 100074
摘要:
在发动机控制系统设计中,为了缩短设计周期、降低研发成本,需要建立面向控制的、较为精确的、实时性高的超燃冲压发动机性能计算模型,以保证模型精度、提高计算速度为研究目标,基于多核高性能计算仿真平台,开展了面向控制的超燃冲压发动机一维模型实时性优化工作。运用简化计算流程、改进C语言程序、开拓缓存区等方法有效提高了一维模型计算速度。创新性地尝试了计算流体力学并行化方法,对隔离段和燃烧室一维模型进行结构分解。计算网格平衡分配至多个中央处理器,并借助核间数据通讯实现多核并行计算。与串行模型计算结果对比,七核并行计算模型性能参数偏差不超过0.1%,全工况仿真时间小于30ms,计算耗时较优化前缩短了75%以上。实时性优化后的多核并行模型计算精度高、速度快、收敛性好,可以作为超燃冲压发动机控制系统设计和半实物仿真验证平台。
关键词:  超燃冲压发动机  计算流体力学  空气动力学  并行计算  实时模型
DOI:10.13675/j.cnki.tjjs.200776
分类号:V231.3
基金项目:国家科技重大专项(2017-V-0014-0066)。
Real-Time Research of Scramjet One Dimensional Model Simulation Based on Multi-Core Parallel Computation
YANG Liu1, SHI Xin-xing2, LIU Xiao-yong1, LI Yan1, SU Cheng-yi1, WANG Ming-jie1
1.Beijing Power Machinery Institute,Beijing 100074,China;2.HIWING Technology Academy of CASIC,Beijing 100074,China
Abstract:
In the engine control system design, in order to shorten the design cycle of control system and reduce the cost of research and development, it is necessary to establish a good real-time scramjet engine model oriented to control. In order to ensure the model accuracy and improve the calculation speed, the real-time optimization of one-dimensional scramjet model for control was carried out based on the multi-core high-performance computing simulation platform. Firstly, the calculation speed of one-dimensional model was improved effectively by simplifying the calculation process, improving the C language program and expanding the cache area. Subsequently, the computational fluid dynamics parallelization method was tried innovatively, which decomposed the one-dimensional model of isolation section and combustor. The computing grids distributed multiple central processors in a balanced way and realized multi-core parallel computing with the help of inter-core data communication.Compared with the calculation results of the serial model, the deviation of the performance parameter of the seven-core parallel calculation model is less than 0.1% and the calculation time of the whole working condition is less than 30ms, and the calculation time is shortened by more than 75% compared with that before optimization. After real-time optimization, this parallel model has high computational accuracy, fast computation speed, good convergence, and can be used as a platform for scramjet control system design and hardware-in-the-loop simulation verification.
Key words:  Scramjet engine  Computational fluid dynamics  Aerodynamic  Parallel computation  Real-time model