基于多核并行计算的超燃冲压发动机 一维模型实时性研究^{*}

杨 柳1,史新兴2,刘小勇1,李 岩1,苏承毅1,王明杰1

(1. 北京动力机械研究所,北京 100074;2. 中国航天科工飞航技术研究院,北京 100074)

摘 要:在发动机控制系统设计中,为了缩短设计周期、降低研发成本,需要建立面向控制的、较 为精确的、实时性高的超燃冲压发动机性能计算模型,以保证模型精度、提高计算速度为研究目标,基 于多核高性能计算仿真平台,开展了面向控制的超燃冲压发动机一维模型实时性优化工作。运用简化计 算流程、改进C语言程序、开拓缓存区等方法有效提高了一维模型计算速度。创新性地尝试了计算流体 力学并行化方法,对隔离段和燃烧室一维模型进行结构分解。计算网格平衡分配至多个中央处理器,并 借助核间数据通讯实现多核并行计算。与串行模型计算结果对比,七核并行计算模型性能参数偏差不超 过0.1%,全工况仿真时间小于30ms,计算耗时较优化前缩短了75%以上。实时性优化后的多核并行模 型计算精度高、速度快、收敛性好,可以作为超燃冲压发动机控制系统设计和半实物仿真验证平台。

关键词:超燃冲压发动机;计算流体力学;空气动力学;并行计算;实时模型
中图分类号: V231.3 文献标识码: A 文章编号: 1001-4055 (2022) 06-200776-08
DOI: 10.13675/j.enki. tjjs. 200776

Real-Time Research of Scramjet One Dimensional Model Simulation Based on Multi-Core Parallel Computation

YANG Liu¹, SHI Xin-xing², LIU Xiao-yong¹, LI Yan¹, SU Cheng-yi¹, WANG Ming-jie¹

Beijing Power Machinery Institute, Beijing 100074, China;
 HIWING Technology Academy of CASIC, Beijing 100074, China)

Abstract: In the engine control system design, in order to shorten the design cycle of control system and reduce the cost of research and development, it is necessary to establish a good real-time scramjet engine model oriented to control. In order to ensure the model accuracy and improve the calculation speed, the real-time optimization of one-dimensional scramjet model for control was carried out based on the multi-core high-performance computing simulation platform. Firstly, the calculation speed of one-dimensional model was improved effectively by simplifying the calculation process, improving the C language program and expanding the cache area. Subsequently, the computational fluid dynamics parallelization method was tried innovatively, which decomposed the one-dimensional model of isolation section and combustor. The computing grids distributed multiple central processors in a balanced way and realized multi-core parallel computing with the help of inter-core data

^{*} 收稿日期: 2020-10-05; 修订日期: 2021-04-11。

基金项目:国家科技重大专项(2017-V-0014-0066)。

通讯作者:杨 柳,硕士,助理工程师,研究领域为发动机控制系统。

^{引用格式:杨 柳,史新兴,刘小勇,等.基于多核并行计算的超燃冲压发动机一维模型实时性研究[J]. 推进技术, 2022, 43(6):200776. (YANG Liu, SHI Xin-xing, LIU Xiao-yong, et al. Real-Time Research of Scramjet One Dimensional Model Simulation Based on Multi-Core Parallel Computation [J].} *Journal of Propulsion Technology*, 2022, 43(6): 200776.)

communication.Compared with the calculation results of the serial model, the deviation of the performance parameter of the seven-core parallel calculation model is less than 0.1% and the calculation time of the whole working condition is less than 30ms, and the calculation time is shortened by more than 75% compared with that before optimization. After real-time optimization, this parallel model has high computational accuracy, fast computation speed, good convergence, and can be used as a platform for scramjet control system design and hardware-inthe-loop simulation verification.

Key words: Scramjet engine; Computational fluid dynamics; Aerodynamic; Parallel computation; Real-time model

1 引 言

发动机的燃油供给系统和控制系统是发动机的 "心脏"和"大脑",是关系发动机的功能、性能、可靠 性、安全性的核心关键系统^[1]。目前,发动机控制系 统的主流设计理念是基于模型的系统工程(MBSE, Model Based System Engineering),发动机模型的应用 贯穿控制系统设计、仿真、分析、试验验证全过程^[2]。 建立精确、快速的发动机模型,有助于充分挖掘发动 机性能潜力,提高控制算法设计效率;以基于模型的 数值模拟和半实物仿真代替大量发动机试验进行系 统验证,可以减少设计迭代,缩短产品研制周期,降 低试验和试错成本。

超燃冲压发动机的核心部件——超声速燃烧 室,其工作过程涉及复杂的气动热力学过程,是典型 的分布参数系统,它无法像涡轮发动机等集总参数 系统一样简化为零维模型[3-4]。基于计算流体力学 (CFD, Computational Fluid Dynamics)数值模拟的二/ 三维模型虽然可以达到很高的仿真精度,但是计算 量巨大,运算时间长。一维模型既保留了满足工程 应用要求的仿真精度,又大幅降低了计算时间,是发 动机总体设计专业主要的性能仿真分析工具,也是 未来超燃冲压发动机控制系统设计的理想技术途 径。目前,国内外学者已经进行了一些与超声速燃 烧室一维模型相关的研究工作。曹瑞峰[3-4]主要分析 了燃烧室性能的主导物理效应,建立的超燃冲压发 动机燃烧室一维模型能够反映三种燃烧模态和燃烧 模态之间的转换边界,给出了开环状态下发动机的 控制规律,然而该模型并没有关注模型运算速度对 控制系统仿真的影响。Ma等[5-6]在超燃冲压发动机 模型研究领域进行了深入研究,建模过程中详细研 究了网格数量对计算精度的影响,通过减少计算量 有效提高了计算速度,还研究了再生冷却超燃冲压 发动机燃烧模型和冷却模型,对比分析了再生冷却 前后发动机的性能变化。Tian等^[7]拟合实验数据,建

立了求解超燃冲压发动机一维控制方程,为匹配实 时特征提出了简化模型的一些建议并设计了适用该 模型的 PID 控制器。系统调研发现,现有的面向控制 的超燃冲压发动机一维模型全部采用串行计算流 程,运算时间较长,一般是真实物理时间的 10 倍以 上,不满足控制系统仿真的使用需求。另一方面,从 物理过程上分析,燃烧室的气动热力学过程和化学 过程在整个流道所有位置上是同时发生的,串行计 算流程仅仅是过去单核处理器条件下的软件编程习 惯,不存在必然性。CFD 并行计算近年来发展迅 速^[8],已经在工程项目中获得了广泛应用^[9-11],但是其 主要针对得是二/三维大规模精密网格,运算平台为 工作站或 PC集群,不适用控制系统半实物仿真^[12-14]。

本文以前期建立的超燃冲压发动机一维仿真模型为基线,采用热力学和空气动力学方法,结合 CFD数值求解的特点,提出一维模型实时性优化策略。 对隔离段和燃烧室一维模型进行结构分解,网格平衡分配至多个 CPU处理器,将原串行计算模型改进 为并行计算结构,在多核高性能计算平台上实现模型的多核并行仿真计算。

2 方 法

2.1 物理模型

在给定发动机几何构型、来流条件和燃料注入 条件的情况下,通过求解基于微分的一维气体动力 学控制方程(1),获得发动机燃烧室内流动参数沿发 动机轴向的分布情况,继而计算得到发动机的性能 参数^[15-17]。

$$\frac{\partial Q}{\partial t} + \frac{\partial F}{\partial x} = S \tag{1}$$

式中 $Q = (A\rho, A\rho u, A\rho E_1)^T$ 为守恒型变量; $F = (A\rho u, Ap + A\rho u^2, A(p + \rho E_1)u)^T$ 为无粘通量项; $S = (\frac{d\dot{m}_s}{dx}, p\frac{dA}{dx} - \frac{\rho u^2}{2}f \cdot C_w + u_{sx}\frac{d\dot{m}_s}{dx}, H_s \cdot \eta_{mix} \cdot \frac{d\dot{m}_s}{dx})^T$ 为源 项; A 为发动机燃烧室横截面积; C_w 为非圆形截面的 湿周长;u_{sx}为燃料喷注速度在x方向的分量;H_s为添 加燃料的滞止焓和化学反应释放的热量之和;η_{mix}为 混合效率;f为壁面摩擦力系数;dm_s为燃料添加项。

有源项一维欧拉方程求解时,要将方程分裂处理,通量项用AUSM格式求解,处理后方程可写成式 (2)的形式。因为时间项在每一个时间步长不需要 对非线性代数方程求解,且所选取的时间步长比较 小,所以采用一阶 TVD Runge-Kutta格式(3)即可满 足精度要求,同时计算效率高。

$$\begin{cases} \frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = G(U); \ 0 < x < L\\ U(x, t^n) = U^n \end{cases}$$

$$U^{n+1} = \overline{U}^{n+1} + \Delta t G(\overline{U}^{n+1})$$
(3)

2.2 多核并行计算方法

CFD并行计算的基本思想是将整个流动区域分 割成N个子区域,每个子区域代表一个子模型,分配 给N个CPU计算,把每个子模型的算法分别载入对 应的CPU核中,计算过程由主进程调度,各CPU核独 立计算,计算完成后在边界进行数据交换,通讯内容 主要为边界变化条件和燃油质量添加更新。计算负 载分配上,主进程需要完成来流条件处理、网格划 分、边界条件赋值、初始条件赋值等初始化流程,分 配子模型并行计算流程。各CPU处理器进行预先载 入的并行计算流程,每次计算完成后更新通讯数据 包,主进程同步收集全场数据,完成收敛准则判别和 相关参数修正,并按需进行存储输出等其它操作^[18]。 相对计算量而言,各核通信只发生在相邻边界上,并 行效率高,结构清晰,串、并行计算流程基本保持 一致。

由于一般情况下并行计算环境中各节点 CPU性 能一致,因此 CFD 并行计算的负载平衡归结为各子 模型网格量的平衡,即保证各个处理器所计算的子 模型网格量尽量一致^[19]。针对本文研究对象,将隔 离段-燃烧室沿流动方向划分为70个网格,再将若干 网格等分为7个子模型,每个子模型中含10个网格, 子模型划分情况如图1所示。按子模型数据交互类 型分类,可分为前段、中段和后段。前段为第一个子 模型,输入条件为隔离段入口条件,且只与其后的子 模型存在数据交互,前段子模型编号为1;后段对应 最后一段流场区域,模型后边界采用自由边界,且只 与其前子模型存在数据交互,后段子模型编号为7; 其余子模型为中段,边界条件受前后子模型影响,通 讯量相对较大,中段子模型编号为2~6。

图2给出了并行模型数据更新及交互原理示意

Fig. 1 Schematic of the sub-model of isolator and scramjet combustion

图,每个子模型在一个 CPU 核上运算。仿真过程包 括两个时间尺度,大步长由控制系统的控制周期决 定。针对本型发动机的工作条件和性能特性,在本 研究确定为30ms。小步长的设置需要考虑模型计算 的收敛性,由气流速度、网格间距等一系列因素决 定,一般为10µs量级。由于发动机工作状态的连续 性,在每个大步长周期开始时,仅第一个子模型对隔 离段入口条件进行更新,位于燃烧室的部分子模型 对供油条件进行更新,其它条件均直接继承上一个 周期运算结果,各子模型独立进行其一维模型计算。 在每个小步长计算结束后,各个子模型根据上下游 相邻子模型的计算结果,通过数据交互对边界马赫 数、总温、静压等条件进行更新,再重复上述一维模 型的计算过程,如此反复,直至整个大步长周期计算 完成。虽然CPU核间通讯将带来部分额外时间开 销,使模型整体收敛所需的小步长增加,但从全局而 言,采用并行计算结构仍可加快一维模型的计算速 度。另外,在并行模型的数值计算全流程中,还需要 解决计算网格划分、数据调度、核间通讯、负载平衡 等关键技术问题,以保证并行结构算法正确性、实时 性、稳定性及可扩展性。

2.3 计算仿真平台

北京动力机械研究所控制研发中心研制了多核 高性能计算平台,采用新一代高速串行总线标准 VPX架构,支持多种并行和串行传输协议。为描述 方便,该平台以下简称VPX平台,如图3所示。

该平台由发动机控制平台、发动机仿真平台及 上位机系统组成,将仿真及控制功能合二为一,采用 相同的嵌入式架构体系。处理器芯片选用国防科技大 学国产高性能数字信号处理器FT-M6678,单核主频为 1GHz。该平台搭载2片8核FT-M6678芯片,具备高速

Fig. 2 Parallel computation and interaction diagram

第43卷

第6期

Fig. 3 Schematic of VPX high-performance computing platform

计算和多核并行计算能力。其中,除0核专用于中央处 理和数据调度外,其余7个核均对用户开放使用。

VPX平台实现并行计算技术路线为:在上位机 系统中,使用Matlab/Simulink软件搭建发动机一维模 型,模型总体架构为各核独立计算,每个周期计算完 成后通过通讯组件进行数据交互。各核CPU主要完 成四部分功能:板卡初始化、核间数据通讯、运行监 测和模型计算。板卡初始化功能由专业初始化组件 实现,每次上电重启时自动执行CPU板卡初始化和 核间数据通讯组件数据包初始化。核间数据通讯实 现数据发送和数据接收功能,使用相关组件时需要 配置发送或接收的 CPU 核编号、传输的数据类型和 数量、传输占用的数据通道、通讯延迟时间等内容, 这些值的设置直接影响传输数据的正确性和通讯效 率。核内运行监测主要完成各核内模型计算次数和 耗时统计,输出计数和时钟参数并在上位机软件中 实时显示。模型计算为 CPU 核内计算的主要内容, 并行计算采用与一维串行计算基本相同的方法,采 用 C 语言编程并封装于 Simulink 的 S-function 组件 中,略有不同的是由原先单一的外部输入输出改为 外部和与其它核通讯交互两种输入输出方式,外部 输入由上位机给定、外部输出以设定的通讯周期向 上位机传输显示。

3 结果与讨论

本文以文献[17]前期建立的隔离段燃烧室一维 模型为基线,几何模型如图4所示,该基线模型经验 证能够良好符合实验数据,合理可信。燃油由A,B 两处燃油点注入发动机,A处为中心支板注入实现中 心燃烧,为避免低马赫不起动的问题,将部分支板喷 油分配到壁面,在B处进行壁面燃油注入。A,B处的 燃料分配比例可调节。

Fig. 4 Schematic diagram of isolation-combustor geometric model (mm)

3.1 实时性评估测算

超燃冲压发动机的动态过程包括激波动态、扰动波传播滞后、分离流动态、燃烧延迟、燃烧振荡等,相关数值计算与实验结果给出了主要动态过程的频带范围,其中主导低频动态为激波动态,响应频率在30Hz以上^[20]。而现有执行机构的响应速度大约为5Hz量级,由此确定该一维模型的实时性优化目标为30ms。

基线模型采用传统的串行计算结构,该模型在 VPX平台上计算70个网格耗时240~280ms。在保证 模型精度的情况下,为了提高模型运算速度,配合在 线仿真器使用CCS调试工具Debug和Profiler等测试 代码,评估代码中存在的、影响性能的低效率段。

经计算量分析测算,网格数量和来流马赫数是 影响模型计算时间的两个最主要参数。网格数量代 表 CFD 计算的空间推进步长;而来流马赫数决定了 求解偏微分方程的时间推进步长,因为采用变时间 步长的算法,来流马赫数越大,气流的流动速度越 快,相应的时间步长越小。它们直接决定了循环迭 代的次数和计算量,选择合适的步长对模型的计算 耗时至关重要。

其次,该模型求解有源项偏微分方程采用一阶 TVD Runge-Kutta法,主体循环嵌套为两层。瞬态项 时间迭代为外循环,计算收敛所需的循环次数*M*为 1~1000,对流扩散项空间迭代为内循环,循环次数*N* 为网格数量70,且外循环中嵌套了数个内循环,粗略 估算代码执行条数为内外循环乘积的数倍,可达十 万条。该段代码编译后指令长度还将成倍增加,所 以,数值求解过程中模型运用大量的迭代循环导致 代码体积最大、耗时最多,占程序总耗时的60% 以上。

最后,测试过程中发现,前期编写程序为了简洁

方便,一维模型几何型面载入、边界条件和流动初值 条件初始化、其他相关参数赋值等均采用封装函数 的形式,在各网格节点参数计算具体过程中直接调 用相应的函数即可。虽然这样的处理方式使程序的 结构层次比较清晰,但随之而来的是不同计算流程 中各网格存在重复调用这些函数却计算相同的参数 的现象,一定程度上浪费了计算资源。

3.2 数字信号处理器编程及代码级优化

对一维模型进行实时性优化,首先应从数字信 号处理(Digital Signal Processor, DSP)编程及代码优 化的思路着手。在满足各种资源限制的前提下,充 分利用硬件计算资源,减少代码长度,匹配芯片底层 运算处理结构,提高计算速度。根据代码实时性评 测结果,在保证精度的情况下,分以下三步对代码进 行调试和优化:

第一步,简化计算流程。将循环中不变的代码 外提,尽量减少循环内语句;尽量合并已知量和复写 传播并删除无用赋值;改善重复调用复杂函数的问题;运用预定义结构体等。

第二步,C语言程序级优化,充分利用软件提供的用于性能优化的编译器选项。Matlab软件的代码自动生成功能支持-O1~-O3级别优化,-O3级表示可能得到的最高程度的优化,编译器将执行各种优化循环的方法,如软件流水、循环展开和单指令多数据等。

第三步,二级缓存优化。本模型计算复杂,代码 和数据文件都比较大,需要对存储空间进行手动配 置,充分发挥高速缓存的加速作用。

配合使用以上所有优化措施、综合评估模型代码的计算时间降至110ms以内,优化后模型代码长度减少了至少200行,编译后的文件大小缩减了40%以上,全工况计算耗时较之前共缩减了60%,计算速度提高了一倍以上,计算速度明显提高。这已经达到了超燃冲压发动机一维模型串行计算的极限。但遗憾的是,这仍不能满足模型实时性计算30ms的目标要求,需要继续开拓思路,考虑其他方法继续提高模型计算速度。

3.3 多核并行计算

DSP的代码优化虽然取得了很好的效果,但是仍没有充分发挥 VPX 平台的计算优势,尤其多核并行资源没有利用。CFD 多核并行化方法可以充分利用 多核高性能处理器的性能提高硬件资源的并行利用 程度,从而提高代码运行速度。多核并行计算仿真 工况下输入条件如表1所示。

Table 1 Model input conditions

Ma	5	6	7
Ma of isolator inlet	2.5	2.7	2.7
Isolator inlet/K	1027	1480	1865
Static pressure of isolator inlet/MPa	0.089	0.059	0.063
Total pressure of isolator inlet /MPa	1.5025	1.4071	1.5025
Fuel ratio of front and rear injectors	48%+52%	65%+35%	100%+0
Equivalence ratio	1	1	1

在 Ma6 和 Ma7, 当量比1工况下, 串行计算模型 与7核并行计算模型仿真结果进行了对比。分析发 现,并行计算模型与串行计算模型参数沿轴线分布 存在偏差,在各子模型交界处逐渐显现出差异并且 随着计算的深入越来越明显。以核 3~核 5 为代表的 中间区域计算偏差明显,静压分布误差最高超过了 30%,性能参数误差累计近10%,这说明模型并行化 对计算精度产生了影响。依据各网格参数仿真结果 分析原因,并行化后各子模型的边界条件较之前发 生变化。原串行计算一维模型只需对进出口边界条 件进行初始化,进口边界采用隔离段入口参数,出口 边界采用自由边界。而采用并行算法将流动区域划 分为7个子区域,每个子区域的边界是人为划分的, 边界处网格的参数相互影响,子模型的边界需要核 间数据通讯保证参数连续性和一致性。CFD计算方 法求解各网格参数时,需要前后相邻网格的参数求 解,原先串行计算模型边界条件的处理方法是前后 延伸网格,延伸的网格是虚拟的,假定其参数等于相 邻边界网格参数。按照同样的方法处理并行后的子 模型边界处的网格,就带来了问题。实际子模型延 伸出的网格并非虚拟的,也并不与其相邻边界处网 格参数相同,具有实际独特的物理特性,网格颗粒度 越大、每个子模型包含的网格越少、并行程度越深, 这种差异影响体现得越明显。这种不合理的边界网 格处理方法影响了子模型的边界网格参数进而影响 了全局计算结果。

寻求解决该问题的方法,在子模型边界处引入 重叠区,即扩大边界区域的范围,将原先的边界网格 节点数目由1个增加至2个。同时,增加核间通讯的 网格参数数量,从优化前的首尾各1个网格的所需全 部参数增加至首尾各2个网格的所需全部参数。这 导致通讯数据量较之前增加了一倍,各处理器计算网 格数也增加了2个,但是精度校正效果也显而易见。 图5给出了马赫6和马赫7工况下,串行模型和7核并 行模型计算结果对比,Parallel-model1为改进前,Parallel-model2为改进后,改进后静压的分布已经能够 很好地贴近串行模型的计算仿真结果。说明上述措施可以有效控制并行化对模型精度造成的影响,改进后并行计算满足对一维模型计算精度的要求。

改进前后的并行模型与串行模型的性能参数计 算精度对比如表2所示。与串行计算结果对比,改进 后的并行模型的推力误差和激波串长度误差明显降 低,均小于0.1%,如果将核间通讯网格数量也继续增 加至首尾各3个,精度并没有明显变化,通讯负担却 增加为最初并行模型的三倍,影响了计算效率。这 种现象也与CFD离散格式和数值求解原理相符,每 个网格只与其相邻的前后网格参数相关,与距离更 远的网格无直接关系。因此,在通讯数据的选择上, 本文改进后子模型边界条件作以下处理:边界区域 网格数为2,核间通讯参数为边界处2个网格的特征 参数,特征参数选取静压、总压、总温和气流速度共4 个,即前段和后段子模型数据通讯量为收发各8个数 据,中段子模型数据通讯量为收发各16个数据,通讯 量比较适中。

 Table 2
 Precision comparison of the parallel model and the baseline model before optimization and after optimization

 (%)

Ma	Parallel model	Error of thrust	Error of specif- ic impulse
6	Before optimization	4.3058	9.3540
	After optimization	0.0567	0.0598
7	Before optimization	5.5525	7.2772
	After optimization	0.0834	0.2803

3.4 性能参数

在典型工况下,对串行模型与精度校正后7核并 行模型的性能参数仿真结果进行对比,推力和激波 串长度参数对比情况见表3。经误差分析,多工况下 串行模型与7核并行模型推力计算偏差均不超过 0.1%,激波串长度计算偏差几乎可以忽略不计。这 进一步证明了串行模型与并行模型在CFD计算原理 上并无本质区别,对模型的并行化处理只是改变了 部分计算流程的执行顺序,通过合理精确的数据通 讯和边界条件更新消除或减弱了某些代码的相关 性,可以保证模型并行计算与串行计算的一致性。

 Table 3 Comparison of performance parameters and accuracy under various operating conditions

Ma	Performance parameters	Baseline model	Parallel model	Error/%
5	Thrust/N	1466.24	1466.08	0.0108
	Length of shock train/mm	21.02	21.02	< 0.0001
6	Thrust /N	921.11	921.87	0.0834
	Length of shock train/mm	142.70	142.30	0.2803
7	Thrust /N	644.34	643.97	0.0567
	Length of shock train/mm	334.00	333.80	0.0598

在并行计算领域,通常用加速比S和并行效率E 来衡量CFD并行计算能力。加速比定义为同一个任 务在单处理器系统与并行处理器系统运行消耗时间 之比,用来衡量并行系统或程序并行化的性能和效 果。并行效率定义为加速比与参与并行计算CPU核 数P之比,效率为1时称并行程序具有线性加速比。 随着并行核数增加,加速比越来越接近线性加速比, 并行效率越来越高。并行程序运行时间、加速比、并 行效率均依赖于核数,同时还依赖于问题的规模。 并行计算适用于大规模计算,一般随着问题规模变 大,数据通讯和调度造成的时间损耗占比越小,加速 比和并行效率会随之增加。超燃冲压发动机一维串 行计算模型与一维七核并行模型在VPX平台上仿真 耗时对比结果在表4中给出。

Table 4 Comparison of simulation time between serial

model and par	allel model (ms)	,
---------------	---------------	-----	---

	Ma=5	Ma=6	Ma=7
Serial model	88~92	90~98	102~109
Parallel model	20~30	20~30	20~30
$\operatorname{Speedup}(S)$	>4.4	>4.5	>5.1
Parallel efficiency (E) /%	>62.86	>64.29	>72.86
Reduced time ratio/%	>77.27	>77.77	>80.39

各工况一维并行计算模型计算耗时较一维串行 模型计算耗时缩短了75%以上,全工况计算仿真时 间控制在30ms以内,稳定加速比最高可达5.1,稳定 并行效率超过60%。综合DSP编程及代码优化和多 核并行计算优化的成果,超燃冲压发动机七核并行 一维模型仿真耗时全工况不超过30ms,稳定计算时 间约为20ms,可以满足控制系统设计仿真对模型实 时性的要求。

4 结 论

本文通过仿真结果的对比,可以得出以下结论:

(1)针对串行计算基线模型,尝试多种 DSP 编程 及代码优化方案,简化了一维模型计算流程,优化了 C语言程序,拓展了计算缓存区,基本达到串行计算 的速度极限,取得了良好的效果,模型计算耗时由原 250ms左右缩短至110ms左右。

(2)并行模型通过引入子模型间的重叠区,增加 核间通讯的网格数量,几乎可以完全消除模型并行 化带来的精度误差。在CPU核间通讯网格数量达到 首尾各2个时,可以平衡计算精度和速度之间的矛 盾,获得最高性价比。

(3)对比串行模型的性能参数,精度校正后并行 计算结果与串行计算结果几乎完全一致,推力和激 波串长度等总体性能误差可降至1%以内,符合工程 应用的精度要求,进一步印证了并行化处理借助合 理的核间通讯拓宽了计算同步进行的线程,不改变 CFD计算的基本原理。

(4)七核并行模型在 VPX 平台上全工况计算耗时 30ms 以内,加速比4以上,并行效率 60% 以上,虽然 CPU 核间通讯带来了部分额外时间开销,但从全局而言,并行计算结构是提高计算速度有效方法,达到了预期的目标。

本文针对超燃冲压发动机一维模型的研究主要 面向控制系统,仍有许多问题需要解决和完善,对后 续的工作方向进行以下展望:

(1)超燃冲压发动机隔离段内激波修正方法不

够合理,激波位置的判断精度严重影响发动机的安 全裕度,需要改进和验证其他更加合适准确的激波 串模型。

(2)进气道和尾喷管作为超燃冲压发动机的重要组成部分,虽然工作过程相比于隔离段、燃烧室较为简单,但是其工作状态相互影响,需要完善整体全面的发动机模型。

(3)发动机几何结构影响网格的划分和工作特性,后续需要尝试不同的发动机型面和供油策略,验证模型的正确性,提高模型的通用性。

致 谢:感谢国家科技重大专项的资助。感谢哈尔滨工 业大学常军涛老师、马继承同学在超燃冲压发动机建模 和验模过程中提供的帮助和指导。

参考文献

- [1] Smart M. Scramjets [R]. NATO RTO-EN-AVT-150, 2008.
- [2] 郭 宇,臧 睿,周璐莎,等.基于模型的系统工程 在航空发动机控制设计中的应用[J].科技导报, 2019,37(7):96-101.
- [3] 曹瑞峰.面向控制的超燃冲压发动机一维建模研究 [D].哈尔滨:哈尔滨工业大学,2011.
- [4] 曹瑞峰.超燃冲压发动机燃烧模态转换及其控制方法 研究[D].哈尔滨:哈尔滨工业大学,2016.
- [5] Ma J, Chang J, Zhang J, et al. Control-Oriented Modeling and Real-Time Simulation Method for a Dual-Mode Scramjet Combustor[J]. Acta Astronautica, 2018, 153: 82-94.
- [6] Ma Jicheng, Chang Juntao, Zhang Junlong, et al. Control-Oriented Unsteady One-Dimensional Model for a Hydrocarbon Regeneratively-Cooled Scramjet Engine
 [J]. Aerospace Science and Technology, 2019, 85: 158-170.
- [7] Tian Chao, Gong Guanghong. A Scramjet Engine Model-

ing Method and Validation for Real-Time Simulation [C]. Wuhan: Modelling, Identification and Control, 2012.

- [8] 朱国林,徐庆新.计算流体力学并行计算技术研究综述[J]. 空气动力学学报,2002(S1):1-6.
- [9] 王 兰.超燃冲压发动机整机非结构网格并行数值模 拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2007.
- [10] 潘 沙.高超声速气动热数值模拟方法及大规模并行 计算研究[D].长沙:国防科技大学,2010.
- [11] 吕晓斌. 欧拉方程的分区和并行计算[D]. 北京:北京 航空航天大学,2000.
- [12] 吕晓斌,朱自强.二维跨音速 Euler 方程分区并行算法[J].北京航空航天大学学报,2000,26(2):194-197.
- [13] 杨树池,乔志德.并行计算在CFD中的应用[C].杭 州:第十届全国计算流体力学会议,2000.
- [14] 杨树池,乔志德.复杂流场的多块并行数值模拟[J]. 航空学报,2000,21(3).
- [15] 尤厚丰,张 兵,李德宝.超燃冲压发动机燃烧室的 准一维计算与分析[J].推进技术,2020,41(3):623-631. (YOU Hou-feng, ZHANG Bing, LI De-bao. Quasi-One-Dimensional Prediction and Analysis of Scramjet Combustor[J]. Journal of Propulsion Technology, 2020, 41(3):623-631.)
- [16] 马继承.超燃冲压发动机燃烧室性能影响因素的对比 分析[D].哈尔滨:哈尔滨工程大学,2015.
- [17] 马继承.超燃冲压发动机综合仿真测试系统分析报告 [D].哈尔滨:哈尔滨工业大学,2017.
- [18] Michael L, Todd T, Jim B, et al. Checkpoint and Migration of UNIX Processes in the Condor Distributed Processing System[R]. Technical Report UW-CS-TR-1346, 1997.
- [19] Sriram S, Jeffrey S, Brain B, et al. The LAM/ M PI Check Point/Restart Framework: System Initiated Check Pointing [J]. International Journal of High Performance Computing Applications, 2005, 19(4): 479-493.
- [20] 于达仁,常军涛,曹瑞峰,等.超燃冲压发动机控制[M].北京:国防工业出版社,2019.

(编辑:张 贺)