引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1159次   下载 733 本文二维码信息
码上扫一扫!
分享到: 微信 更多
高负荷对转压气机尾迹涡级间迁移影响因素研究
徐强仁1,2,马英群1,2,叶树波3,项效镕1,赵庆军1,2,4
(1. 中国科学院工程热物理研究所,北京 100190;2. 中国科学院大学 航空宇航学院,北京 100049;3. 西安交通大学 能源与动力工程学院,陕西 西安 710049;4. 中国科学院轻型动力重点实验室,北京 100190)
摘要:
为探究高负荷对转压气机上游转子尾迹脱落涡级间迁移的影响因素,截取高负荷对转压气机60%叶高叶型,保持叶型几何、总压比不变的前提下,分别取12%,20%,25%,30%,35%,45%下游转子弦长的轴向间隙进行了非定常数值模拟。研究发现,在每个轴向间隙下,尾迹脱落涡迁移至下游转子前缘平面的周向位置均不随时间发生变化;当轴向间隙改变时,尾迹脱落涡迁移路径随之发生变化。基于理论分析和数学推导,建立了高负荷对转压气机尾迹脱落涡级间迁移轨迹的无量纲准则关系式,并结合通流计算与激波模型,发展了预估上游转子尾迹脱落涡迁移轨迹的方法,为设计阶段考虑非定常效应提供指导。
关键词:  对转压气机  尾迹涡  级间  非定常  高负荷
DOI:
分类号:
基金项目:国家自然科学基金重大项目(51790513);国家重点研发计划(2016YFB0901402)。
Variables Research on Inter-Stage Transport of Wake Vortexin a High-Load Counter-Rotating Compressor
XU Qiang-ren1,2,MA Ying-qun1,2,YE Shu-bo3,XIANG Xiao-rong1,ZHAO Qing-jun1,2,4
(1. Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China;2. School of Aeronautics and Astronautics,University of Chinese Academy of Sciences,Beijing 100049,China;3. School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China;4. Key Laboratory of Light-Duty Gas-Turbine,Chinese Academy of Sciences,Beijing 100190,China)
Abstract:
In order to identify the variables responsible for the inter-stage transport of upstream rotor wake vortex in a high-load counter-rotating compressor, the blade section at 60% span position was selected to perform unsteady numerical simulations. The axial gap of two blade rows varies among 12%, 20%, 25%, 30%, 35% and 45% of downstream rotor chord, with fixed blade geometry and constant total pressure ratio. The results show that the wake’s arriving position in the downstream blade leading edge plane keeps stationary with time marching, no matter for which magnitude of axial gap. The migration trajectory of wake vortex moves as the axial gap is changed. Based on theoretic analysis and mathematical derivation, a non-dimensional correlation has been proposed to model the trajectory of wake vortex. Combining through-flow calculation with shock model, the authors develop a method for predicting the trajectory of upstream rotor’s wake vortex, which can be applied to improve the unsteady effects in compressor design.
Key words:  Counter-rotating compressor  Wake vortex  Inter-stage  Unsteady  High load