引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 228次   下载 53 本文二维码信息
码上扫一扫!
分享到: 微信 更多
盘结构行波共振非接触式激励方法与试验验证
左彦飞1,2,李进1,2,梁吉鹏3,王鹏辉3,洪良友3
1.北京化工大学 机电工程学院,北京 100029;2.北京化工大学 发动机健康监控及网络化教育部重点实验室,北京 100029;3.北京强度环境研究所,北京 100076
摘要:
为研究静止和旋转条件下盘结构行波共振激励条件,以典型旋转轮盘为研究对象,提出了基于行波共振理论和电涡流激振的盘结构行波共振非接触激励方法。并以两点激励下轮盘静止和1500r/min转速时,二节径行波共振激励为例,进行了仿真分析和试验验证,与仿真结果相比,试验测得的二节径前、后行波共振频率误差最大为5.1%,相位差最大误差在12°左右。结果表明:对于单一固有频率所对应的振型,当激振力频率与系统固有频率相等,激振力向量与模态振型向量平行,即可激起最大的纯净的行波共振;对于重频模态振型,需同时满足激振力频率与系统固有频率相等,激振力向量与想要激起的模态振型向量平行,与其他模态振型向量正交,才能激起最大的纯净的行波共振。
关键词:  旋转轮盘  振动模态  行波共振  非接触激励  试验验证
DOI:10.13675/j.cnki.tjjs.210492
分类号:O327
基金项目:
Non-Contact Excitation Method of Traveling Wave Resonance and Experimental Verification of Disk Structure
ZUO Yan-fei1,2, LI Jin1,2, LIANG Ji-peng3, WANG Peng-hui3, HONG Liang-you3
1.College of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing 100029,China;2.Key Lab of Engine Health Monitoring-Control and Networking of Ministry of Education, Beijing University of Chemical Technology,Beijing 100029,China;3.Beijing Intensity and Environment Institute,Beijing 100076,China
Abstract:
In order to study the traveling wave resonance conditions of disk structure under stationary and rotating conditions, taking a typical rotating disk as the research object, the non-contact excitation method of traveling wave resonance based on the traveling wave resonance theory and eddy current excitation for disk structure was proposed. The simulation analysis and experimental verification were carried out by taking the second node-diameter traveling wave resonance excitation under two-point excitation of the rotating speed at 0 and 1500r/min as an example. Compared with the numerical results, the maximum error of the resonant frequency of the forward and backward traveling wave of the second node-diameter measured by the experiment is 5.1%, and the maximum error of phase difference is about 12°. The results show that for a single natural frequency and mode shape, when the excitation force frequency is equal to the natural frequency of the system, moreover, the excitation force vector is parallel to the mode shape vector, the maximum pure traveling wave resonance can be excited. For mode shapes with repeated frequencies, when the excitation force frequency is equal to the natural frequency of the system, moreover, the excitation force vector is parallel to the desired mode shape vector and orthogonal to other mode shape vectors, the maximum pure traveling wave resonance can be excited.
Key words:  Rotating disk  Vibration mode  Traveling wave resonance  Non-contact excitation  Experimental verification