引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 204次   下载 60 本文二维码信息
码上扫一扫!
分享到: 微信 更多
粘塑性本构模型材料参数识别的降维优化方法及其应用
石多奇1,隋天校1,范永升1,董成利2,郭广平2,杨晓光1
1.北京航空航天大学 能源与动力工程学院,北京 100191;2.中国航发北京航空材料研究院,北京 100095
摘要:
为了建立简单高效的材料参数优化方法,将张量形式的本构方程降低维度,表达为标量形式的本构方程,利用Matlab软件完成了标量本构模型与数学优化算法的一体化集成,开发了材料参数优化程序组,获得了FGH96,K417G,IC10,DD26高温合金不同温度下的材料参数,并利用有限元软件Abaqus软件Material library模块对材料参数进行存储管理。结果显示:所建立的参数优化方法计算代价小,优化效率高,操作相对简单,可快速自动地获得粘塑性模型的材料参数;调用计算程序及Material library模块中的相关数据,能够较为精确地模拟高温合金的短时拉伸性能与长时蠕变性能,可完成复杂温度场下涡轮叶片的蠕变分析。
关键词:  粘塑性  本构模型  材料参数识别  降维优化方法  推进系统  热端部件  高温合金
DOI:10.13675/j.cnki.tjjs.210447
分类号:V231.91
基金项目:国家科技重大专项(J2019-VI-0008)。
Dimensionality Reduction Optimization Method about Material Parameter Identification of Viscoplastic Constitutive Models and Its Application
SHI Duo-qi1, SUI Tian-xiao1, FAN Yong-sheng1, DONG Cheng-li2, GUO Guang-ping2, YANG Xiao-guang1
1.School of Power and Energy,Beihang University,Beijing 100191,China;2.AECC Beijing Institute of Aeronautical Materials,Beijing 100095,China
Abstract:
The aim of this investigation is to develop a simple and efficient material parameter optimization method. The constitutive tensor equations were rearranging to scalar ones. The integration of the scalar constitutive model and mathematical optimization algorithm was achieved by Matlab software, and the material parameter optimization program was developed. The material parameters of FGH96,K417G,IC10,DD26 at different temperatures were obtained. The Material library module of Abaqus software was used to store and manage these material parameters. The results show that the developed parameter optimization method had the advantages of low calculation cost, high optimization efficiency, and relatively simple implementation. The material parameters of viscoplastic model could be obtained efficiently and automatically by this optimization method. Calling the routines and the material parameters in the Material library module, the short-term tensile properties and the long-term creep properties of these superalloys were simulated accurately. The creep analysis of a turbine blade under complex temperature fields was further completed.
Key words:  Viscoplasticity  Constitutive models  Material parameter identification  Dimensionality reduction optimization method  Propulsion system  Hot section  Superalloy