摘要: |
为了探究超临界RP-3在喷嘴内的流动与相变特性规律,采用自主设计的喷嘴内部收缩通道模拟试验件,对超临界RP-3在喷嘴内的压力分布进行测量,并采用基于一维等熵假设的计算方法进行数值模拟。试验首次获得了超临界航空煤油RP-3在喷嘴收缩通道内的沿程静压分布随喷射压力、温度变化的规律。通过与模型对比,发现未发生相变时,计算结果与试验值拟合精度较高,可以较好地预测RP-3在喷嘴内的流动参数,喷嘴内的静压分布也趋于一致;发生冷凝相变时,计算结果与试验值产生误差较大,喷射参数对于静压分布存在着较大的影响。通过试验,获得了超临界RP-3航空煤油在喷嘴内的流动与相变特性。 |
关键词: 喷嘴通道 超临界喷射 RP-3 相变 压力分布 |
DOI:10.13675/j.cnki.tjjs.200643 |
分类号:V312+.1 |
基金项目:国家科技重大专项(2017-III-0005-0029)。 |
|
Flow and Phase Transition Characteristics of Supercritical RP-3 Aviation Kerosene in Injector |
XIAO Jing-yuan1, LIN Yu-zhen1, LIU Gui-gui1, XUE Xin2, HUI Xin1
|
1.Research Institute of Aero-Engine,Beihang University,Beijing 100191,China;2.National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics,Research Institute for Frontier Science,Beihang University,Beijing 100191,China
|
Abstract: |
To explore the flow and phase transition characteristics of supercritical RP-3 in the injector, the pressure distribution along the injector of supercritical RP-3 are measured by using a self-designed simulation test piece of injector contraction channel. Numerical simulation was carried out by using one-dimensional isentropic calculation method. The static pressure distribution of supercritical aviation kerosene RP-3 in the injector shrinkage channel varies with the injection pressure and temperature. By comparing with the model, it is found that without phase transition, the fitting accuracy of the calculated results and the experimental values is relatively high, and the flow parameters of RP-3 in the nozzle can be well predicted, and the static pressure distribution in the nozzle tends to be consistent. When the condensation phase transition occurs, the differences between the calculated results and the experimental values are large, and the injection parameters have a great influence on the static pressure distribution. Through experiments, the flow and phase transition characteristics of supercritical RP-3 in the injector are obtained. |
Key words: Injector channel Supercritical injection RP-3 Phase transition Pressure distribution |