引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 732次   下载 307 本文二维码信息
码上扫一扫!
分享到: 微信 更多
液氧煤油补燃发动机泵间管路高温富氧燃气掺混冷凝特性数值研究
谢福寿1,杜飞平2,王晓峰2,朱康3,兰小刚4,厉彦忠1
1.西安交通大学 能源与动力工程学院,陕西 西安 710049;2.西安航天动力研究所 液体火箭发动机技术重点实验室,陕西 西安 710100;3.南方科技大学 工学院,广东 深圳 518000;4.上海蓝滨石化设备有限责任公司,上海 201518
摘要:
针对液氧煤油补燃发动机液氧预压泵和主泵间管路富氧燃气掺混冷凝现象,建立了大过热度下富氧燃气和液氧两相流动掺混冷凝特性的全三维数值仿真方法,并以常温制冷剂R123为工质,通过气液掺混冷凝实验验证了数值仿真模型对管内两相流型和气液再液化性能的精确预测能力。仿真结果表明:弯管段气液两相在离心力作用下发生横向相对流动,强化了相间热质交换;在较低的液体流速(1m/s)下,气体水平注入管路后形成一个与气孔相连接的局部气腔,注气速率低于80m/s时,气腔一侧贴在管路内壁上,注气速率超过100m/s后气腔脱离管路内壁面。气相在气腔下端被撕裂成离散的气泡,随液体向下游流动并逐渐冷凝。在实际工况下管路的富氧燃气没有全部完成再液化过程,此时流体状态会对液氧主泵造成气蚀影响。
关键词:  补燃发动机  富氧燃气  掺混冷凝  大过热度  再液化
DOI:10.13675/j.cnki.tjjs.200633
分类号:V434.1
基金项目:国家自然科学基金(51906184);中国博士后科学基金(2020M673391;2018M633505);国防科技重点实验室基金(6142704190202);陕西省博士后科研项目(2018BSHGZZHQYXMZZ13);中央高校基本科研业务费专项资金(XY2012020074);航天低温推进剂技术国家重点实验室基金(SKLTSCP1905)。
Numerical Study on Mixing Condensation Characteristics of High Temperature Oxygen Enriched Gas in Pipe Between Turbopump for Liquid Oxygen/Kerosene Staged Combustion Cycle Engines
XIE Fu-shou1, DU Fei-ping2, WANG Xiao-feng2, ZHU Kang3, LAN Xiao-gang4, LI Yan-zhong1
1.School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China;2.Science and Technology on Liquid Rocket Engine Laboratory,Xi’an Aerospace Propulsion,Xi’an 710100,China;3.Institute of Technology,Southern University of Science and Technology,Shenzhen 518000,China;4.Shanghai Lanbin Petrochemical Equipment Co.,Ltd.,Shanghai 201518,China
Abstract:
Aiming at mixing condensation phenomenon of high temperature oxygen enriched gas in a pipe between a reloading pump and a main pump for liquid oxygen/kerosene staged combustion cycle engines, a full three-dimension numerical calculation method on mixing condensation characteristics of oxygen enriched gas and liquid oxygen two phase-flow under large super-heat degree was developed. Experiment study of gas-liquid mixing condensation with refrigerant R123 as working medium was conducted to verify accuracy and reliability of the numerical model. Calculated results show that lateral relative flow of the gas-liquid two-phase occurs in the elbow section under the action of centrifugal force, which enhances the heat and mass transfer between the two phases. Under lower liquid velocity of 1m/s, a local gas cavity connected with the gas hole is formed after the high temperature oxygen enriched gas is injected into the pipe horizontally. When the gas injection rate is lower than 80m/s, one side of the gas cavity is attached to the inner wall of the pipe. When the gas injection rate exceeds 100m/s, the gas cavity could leave the inner wall of the pipe. The gas phase is torn into discrete bubbles at the lower end of the gas cavity and it gradually condenses with the liquid flowing downstream. As a result, it is found that the oxygen enriched gas in the outlet of pipe is not fully re-liquified in this actual working condition, and this flow state may cause cavitation effect on the main liquid oxygen pump.
Key words:  Staged combustion cycle engines  Oxygen enriched gas  Mixing condensation  Large superheat degree  Reliquification