引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1324次   下载 624 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于能量法的刷式密封刷丝颤振流固耦合研究
孙 丹1,白伟钢1,刘宁宁1,艾延廷1,胡广阳2
(1. 沈阳航空航天大学 辽宁省航空推进系统先进测试技术重点实验室,;辽宁 沈阳 110136;2. 中国航发沈阳发动机研究所,辽宁 沈阳 110015)
摘要:
为了研究刷式密封刷丝颤振特性,采用能量法及双向流固耦合与动网格技术,建立了刷式密封刷丝颤振特性瞬态流固耦合求解模型,将数值模型结果与理论模型和实验结果分别进行验证;在此基础上,从非定常气动力做功角度分析刷丝的变形规律,研究了刷式密封结构参数对刷丝颤振特性的影响。结果表明:非定常气动力做功与刷丝变形运动随时间均呈振荡变化趋势;后挡板保护高度从2.1~3.6mm,刷丝长度从4.0~5.5mm以及刷丝直径从0.13~0.19mm非定常气动力做功减少,有利于抑制颤振的发生;刷丝间隙及刷丝束与后挡板轴向间隙的变化对刷丝颤振影响不大。
关键词:  刷式密封  刷丝颤振  能量法  刷丝变形  流固耦合
DOI:
分类号:
基金项目:国家自然科学基金(51675351);航空基金(20140454003);辽宁省自然科学基金项目(2015020113)。
Fluid-Solid Interaction Study of Brush Seals Bristle Flutter with Energy Method
SUN Dan1,BAI Wei-gang1,LIU Ning-ning1,AI Yan-ting1,HU Guang-yang2
(1. Liaoning Key Lab of Advanced Test Technology for Aerospace Propulsion System,Shenyang Aerospace University,Shenyang 110136,China;2. AECC Shenyang Engine Institute,Shenyang 110015,China)
Abstract:
In order to study the flutter characteristics of bristle, transient fluid-solid interactional model of brush seals bristle flutter was established based on energy method by two-way fluid-solid interaction and dynamic mesh technology. The numerical model results were respectively verified by the theoretical model and the experimental results. Then, the deformation law of bristle was analyzed from the angle of unsteady aerodynamic work, and the effects of brush seal structure parameters on the flutter characteristics of bristle were studied. Results show that the energy of unsteady aerodynamic force and the brush deformation are oscillating trend. With the trailing edge from 2.1mm to 3.6mm, bristle length from 4.0mm to 5.5mm and the bristle diameter from 0.13mm to 0.19mm, the energy of unsteady aerodynamic force reduce, which is conducive to the suppression of chatter. The change of the bristles clearance and the clearance between the trailing edge and bristle has little effect on the flutter of the bristle.
Key words:  Brush seal  Bristle flutter  Energy method  Bristle deformation  Fluid-solid interaction