引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 56次   下载 38 本文二维码信息
码上扫一扫!
分享到: 微信 更多
变弯度导叶铰接位置对风扇振动特性的影响
张晓杰1,2,3,毛建兴1,2,4,李洪波5,刘茜2,3,4,6,赵炎2,4,6,王荣桥2,4,6,胡殿印1,2,3,4
1.北京航空航天大学 航空发动机研究院,北京 100191;2.北京航空航天大学 航空发动机结构强度北京市重点实验室,北京 100191;3.超循环气动热力前沿科学中心,北京 100191;4.中小型航空发动机联合研究中心,北京 100191;5.清华大学 航天航空学院,北京 100084;6.北京航空航天大学 能源与动力工程学院,北京 100191
摘要:
针对变弯度导叶尾迹激励引起的转子叶片共振,基于谐响应模态叠加法对风扇转子进行强迫振动分析,研究了不同铰接位置的变弯度导叶对风扇气动性能及其振动特性的影响。结果表明,随着铰接位置向尾缘移动,风扇转子流量、压比和效率增加,稳定裕度降低,主要影响下游转子叶根部位的进气角度。在气动激励方面,随着铰接位置后移,转子叶片表面的压力幅值增大,相位变化剧烈,通过将非定常气动力转换到模态空间中,可以看到叶片所受模态气动力在铰接位置为35%CC为轴向弦长)的情况下达到最大值,后呈现先减小后增加的规律,这与振动响应的变化规律一致。铰接位置对所关注的高阶局部模态的气动阻尼影响较小,最大差异为0.046%。在振动响应方面,转子叶片的振动应力随铰接位置剧烈改变,且为非单调变化。在设计位置处叶片的振动应力最小,在35%C处振动应力达到设计位置的15倍。对于本文所研究的模型及工况,最优铰接位置为45%C,与仅考虑气动性能的25%C不同。因此在变弯度导叶设计时,需要考虑其对叶片振动特性的影响。
关键词:  航空发动机  变弯度导叶  铰接位置  强迫振动  尾迹激励  气动阻尼  共振
DOI:10.13675/j.cnki.tjjs.2309057
分类号:V215.3
基金项目:国家自然科学基金(52205081);“两机”专项基础研究(J2019-IV-0016-0084);“两机”基础科学中心重大项目(P2022-A-III-001-001);中央高校基本科研业务费专项资金(501QYZX2023146001)。
Effects of hinged position of variable inlet guide vanes on vibration characteristics of fans
ZHANG Xiaojie1,2,3, MAO Jianxing1,2,4, LI Hongbo5, LIU Xi2,3,4,6, ZHAO Yan2,4,6, WANG Rongqiao2,4,6, HU Dianyin1,2,3,4
1.Research Institute of Aero-Engine,Beihang University,Beijing 100191,China;2.Beijing Key Laboratory of Aero-Engine Structure and Strength,Beihang University,Beijing 100191,China;3.Frontiers Science Center for Super-Cycle Aeroengine’s Aerothermodynamics,Beijing 100191,China;4.United Research Center of Mid-Small Aero-Engine,Beijing 100191,China;5.School of Aerospace Engineering,Tsinghua University,Beijing 100084,China;6.School of Energy and Power Engineering,Beihang University,Beijing 100191,China
Abstract:
For the rotor blade resonance induced by the wake excitation of variable inlet guide vanes, forced vibration analysis of the fan rotor was conducted with the utilization of the harmonic response method. The effects of variable inlet guide vane at different hinge positions on the aerodynamic performance and vibration characteristics of the downstream rotor blade were studied. Results indicate that as the hinge position moves towards the trailing edge, the mass flow rate, pressure ratio, and efficiency of the fan rotor increase, while the stability margin decreases, which mainly affects the inlet angle of the downstream rotor blade root. For aerodynamic excitation, as the hinge position moves backward, the pressure amplitude of the rotor blade increases and the phase changes sharply. By converting the unsteady aerodynamic excitation into the modal space, it can be seen that the modal aerodynamic force reaches the maximum value at the hinge position of 35%CC is the axial chord length), and then decreases to the minimum value before increasing, which is consistent with the variation law of vibration response. The hinge position of the guide vane has little effect on the aerodynamic damping of the higher-order local modes of concern, with a maximum difference of 0.046%. In terms of vibration response, the vibration stress of rotor blade varies sharply with the hinge position and is non-monotonic. It is the smallest at the design position, and reaches 15 times of the design position at 35%C. For the model and operating conditions studied in this article, the optimal hinge position is 45%C, which is different from the 25%C when only considering the impact of aerodynamic performance. Therefore, in the design of variable inlet guide vanes, it is necessary to consider their impact on the vibration characteristics.
Key words:  Aero-engine  Variable-inlet guide vane  Hinged position  Forced vibration  Wake excitation  Aerodynamic damping  Resonance