引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 50次   下载 43 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于流体振荡器阵列的S型流道主动控制实验研究
王士奇1,邵冬1,罗斌1,贾志刚1,陆华伟2,孔晓治2
1.中国航空发动机集团有限公司 中国航空发动机研究院,北京 101304;2.大连海事大学 船舶与海洋工程学院,辽宁 大连 116026
摘要:
本文针对一个典型的大折转角、大尺度S弯流道,设计并制造了一个由16个流体振荡器组成的大型阵列,并对S弯内部流动进行了主动控制实验研究。首先采用高频响热线风速仪、高精度质量流量计等手段测量了流体振荡器的频率、速度、流量等随进口压力的响应变化规律及其在大型阵列中的工作特性一致性。其次采用壁面压力采集、五孔探针等手段测量了不同激励条件下,S弯流道的壁面压力分布以及出口截面的总压分布情况。结果表明,所设计的脉冲型流体振荡器能够产生1 kHz以上,峰值速度高于300 m/s的高频高速振荡射流,且阵列中多个振荡器的流量、频率、振荡速度范围等工作特性保持了较好的一致性。流体振荡器阵列在S弯流道上壁面一弯前缘形成了一排开孔率仅为10%的脉冲射流孔,在与主流成45°射流角度、进口马赫数Ma=0.15,激励速度比uR=4.31条件下,仅使用激励质量流量比Cm=0.39%的激励质量流量,就使S弯流道的出口平均总压损失改善了10.6%。本研究验证了流体振荡器阵列控制大尺寸分离流动的高效能力。
关键词:  S型流道  流体振荡器阵列  脉冲射流  主动流动控制  非定常激励器
DOI:10.13675/j.cnki.tjjs.2301007
分类号:V231.3;V218
基金项目:先进航空动力创新工作站(HKCX2022-01-010;HKCX2019-01-016);国家自然科学基金(52306052)。
Experimental study on active flow control in S-shaped duct with an array of fluidic oscillators
WANG Shiqi1, SHAO Dong1, LUO Bin1, JIA Zhigang1, LU Huawei2, KONG Xiaozhi2
1.Aero Engine Academy of China,Aero-Engine Corporation of China,Beijing 101304,China;2.School of Naval Architecture and Ocean Engineering,Dalian Maritime University,Dalian 116026,China
Abstract:
In order to control the flow structure actively inside a typical large scale S-shaped duct with an aggressive offset, an array of 16 fluidic oscillators was designed and manufactured. An experimental investigation was conducted to examine the flow field in S-duct. First of all, the frequency response, velocity response, flow rate response to the inlet pressure, and the consistency of the oscillators’ working characteristics were measured by means of high-frequency hot wire and high precision mass flowmeter. Secondly, the static pressure distribution on wall surface and the total pressure distribution in the exit cross-section were measured by a pressure scanner and five-hole probe respectively. The results showed that the designed pulsing jet fluidic oscillator can generate a high-frequency high-speed oscillating jet with a frequency higher than 1 kHz, as well as a peak velocity higher than 300 m/s, and the oscillators’ operating characteristics (e.g. flow rate, frequency, oscillating velocity range, et al.) in the array maintained good consistency. The fluidic oscillator array was installed in the front edge of first bend on the upper wall of S-shaped duct, forming an array of pulsing jet hole with an area ratio of 10%. When duct’s inlet Mach number Ma=0.15, inclined angle of the excitation jets was 45°, only with a velocity ratio of uR=4.31, and a mass flowrate ratio of Cm=0.39%, the average total pressure loss across the duct’s exit cross-section can be improved by 10.6%. This study verifies the high-efficiency capabilities of the fluidic oscillator array in actively controlling the large-scale separated flows.
Key words:  S-shaped duct  Fluidic oscillator array  Pulsing jet  Active flow control  Unsteady actuator