摘要: |
优化设计可有效减少对人工设计经验的依赖,改善压气机几何气动性能设计的难度,缩短压气机设计的周期。为克服压气机叶片几何气动性能优化设计中高维、耗时、黑箱三大难题,本文回顾近40年来在压气机气动外形参数化方法、数值计算技术、优化算法三个方面的研究进展;总结了机器学习及数据挖掘、基于不确定性的鲁棒性优化设计理论的研究进展;指明优化设计可探索压气机几何形状最佳气动性能极限,并总结和展望了压气机叶片优化设计方法的发展方向。 |
关键词: 压气机 优化设计 优化算法 机器学习 不确定性 综述 |
DOI:10.13675/j.cnki.tjjs.2211068 |
分类号:V231.3 |
基金项目:中国航空工业集团公司金城南京机电液压工程研究中心技术开发项目(ZY22076)。 |
|
Review of optimization design methods for compressor blade geometry and aerodynamic performance |
HUANG Song1,2, WANG Peng1,2, WANG Yangbing1,2
|
1.Second Power System Department of AVIC Jincheng Nanjing Electromechanical and Hydraulic Engineering Research Center,Nanjing 211106,China;2.Key Laboratory of Integrated Aviation Science and Technology of Aviation Electromechanical System of AVIC, Nanjing 211106,China
|
Abstract: |
The optimal design can effectively reduce the dependence on manual design experience, improve the difficulty of compressor geometric aerodynamic performance design and shorten the compressor design cycle. Firstly, in order to overcome the three major problems of high-dimensional, time-consuming, and black-box in the geometric aerodynamic performance optimization design of compressor blades, the research progress in the past 40 years in three aspects of compressor aerodynamic shape parameterization method, numerical calculation technology and optimization algorithm is reviewed in this paper. Secondly, the research progress of machine learning and data mining, uncertainty-based robust optimization design theory is summarized. Finally, it is pointed out that the optimization design can explore the optimal aerodynamic performance limit of compressor geometry, and the development direction of the compressor blade aerodynamic optimal design method is summarized and prospected. |
Key words: Compressor Optimization design Optimization algorithm Machine learning Uncertainty Review |