引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 177次   下载 106 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于“分段-组合”残差神经网络的超声速氢气零维点火计算方法
陈尔达1,2,宋昊宇1,2,郭明明1,2,田野1,2,乐嘉陵2,张华1
1.西南科技大学 信息工程学院,四川 绵阳 621010;2.中国空气动力研究与发展中心,四川 绵阳 621000
摘要:
受限于发动机燃烧数值模拟需要长时间超级计算机运行的问题,发展了一种基于“分段-组合”残差神经网络的氢气零维点火计算方法。以氢气零维点火算例为基础,基于自主研发的高超声速内外流耦合数值模拟软件AHL3D构建数据集。数据集中输入变量为超声速工况下的温度、压强及8种组分质量分数的初始状态值,输出变量为3000个时刻点的温度、压强及8种组分质量分数状态值。构建了一种“分段”训练、“组合”预测的残差神经网络框架。算法首先将高维输入数据进行降维训练,再将“分段”模型预测后的参数冻结形成“组合”模型。与氢燃料直接计算相比,实验结果表明“分段-组合”残差神经网络可显著提升计算效率,对于11组分29反应的反应动力学模型可获得9.13倍的计算加速比,均方根误差降到了7.85×10-5,氢燃料参数的预测精度都高于98%,计算效率及精度优于现有的神经网络燃烧计算方法。
关键词:  “分段-组合”模型  残差神经网络  零维点火  数值模拟  计算加速
DOI:10.13675/j.cnki.tjjs.2208105
分类号:V231.1
基金项目:国防科工局项目(WDZC6142703202205);国家自然科学基金(11902337)。
Calculation Method of Supersonic Hydrogen Zero-Dimensional Ignition based on Segmentation-Combination Residual Neural Network
CHEN Er-da1,2, SONG Hao-yu1,2, GUO Ming-ming1,2, TIAN Ye1,2, LE Jia-ling2, ZHANG Hua1
1.School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,China;2.China Aerodynamic Research and Development Center ,Mianyang 621000,China
Abstract:
Due to the problem that the engine combustion numerical simulation requires long-time supercomputer operation, a zero-dimensional hydrogen ignition calculation method based on segmentation-combination residual neural network was developed. For the zero-dimensional hydrogen ignition calculation example, this method establishes a data set in the self-developed hypersonic internal and external flow coupling numerical simulation software AHL3D. The input variables of the data set are the initial state values of temperature, pressure, and mass fractions of eight components under supersonic conditions. The output variables are the temperature, pressure, and state values of mass fractions of eight components at 3000 time points. The framework of residual neural network for “segment” training and “combination” prediction is constructed. The algorithm first reduces the dimensionality of the high-dimensional input data for training, and then freezes the parameters predicted by the “segmented” model to form the “combined” model. Compared with the direct calculation of hydrogen fuel, the experimental results show that the segmentation-combination residual neural network can significantly improve the calculation efficiency. For the reaction kinetic model of 11 components and 29 reactions, the calculation acceleration ratio can be 9.13 times, the root mean square error is reduced to 7.85×10-5, and the prediction accuracy of hydrogen fuel parameters is higher than 98%. The calculation efficiency and accuracy are better than the existing neural network combustion calculation methods.
Key words:  Segmentation-combination model  Residual neural network  Zero-dimensional ignition  Numerical simulation  Computational acceleration