引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 325次   下载 151 本文二维码信息
码上扫一扫!
分享到: 微信 更多
冷却环带结构形态及离心角度对流场的影响
侯瑞峰1,李龙飞2,陈建华1,卢钢1,曹晨1
1.西安航天动力研究所 液体火箭发动机技术重点实验室,陕西 西安 710100;2.西北工业大学 航天学院,陕西 西安 710072
摘要:
为了优化冷却环带局部喷注结构的型面参数,延长液膜存续寿命,采用广义超临界流体定义方法,对高压液氧煤油火箭发动机推力室第一环带的液膜流动特性进行了数值研究。分析了喷注结构的内边弧度半径和冷却剂的入射离心角度对流线发展、介质分布、湍流动能等的影响。结果表明,受超临界流体物性参数的突变影响,入口上、下游壁面处均会出现涡流效应,阻碍当地对流换热作用,阻断液膜铺展并引起液壁分离现象,加剧气液卷吸掺混;增大内弧半径可扩大液膜有效区域,半径为2.0mm时,有效区占比为59.2%;提高入射离心角可显著减弱涡流效应;2.0mm的内弧半径和84°的入射离心角为最佳工况组合,采用该方案可大幅优化液膜的稳定性和顺滑性。
关键词:  液体火箭发动机  推力室  液膜冷却环带  喷注结构  入射角度
DOI:10.13675/j.cnki.tjjs.2209084
分类号:V434+.24
基金项目:173科技基础加强计划重点基础研究项目。
Effects of Structure Shape and Centrifugal Angle on Flow Characteristics of Coolant from Cooling Film Injection Slot
HOU Rui-feng1, LI Long-fei2, CHEN Jian-hua1, LU Gang1, CAO Chen1
1.Science and Technology on Liquid Rocket Engine Laboratory,Xi’an Aerospace Propulsion Institute, Xi’an 710100,China;2.School of Aerospace, Northwestern Polytechnical University,Xi’an 710072,China
Abstract:
In order to optimize the profile parameters of structure of cooling film injection slot and prolong the life of liquid film, the flow characteristics of liquid film is numerically analyzed. The generalized supercritical fluid definition were used to study the liquid film which is injected from the first cooling slot of the high-pressure liquid oxygen and kerosene rocket engine thrust chamber. Effects of the radius of injection structure inner arc and the centrifugal angle of coolant on the development of streamlines, the distribution of the coolant, and the turbulent kinetic energy were analyzed. The results show that eddy effect appears, affected by the sudden change of the physical parameters of supercritical fluid. Two eddy areas which hinder the convection heat transfer on the local wall, block the spread of liquid film, cause the separation phenomenon, aggravate the entrainment between gas and liquid, appear near the upstream wall and downstream wall of the coolant inlet. Increasing the inner arc radius can broaden the effective film development area proportion. The effective area proportion is 59.2% when the inner arc radius is 2.0mm. Increasing the coolant centrifugal angle can effectively reduce the eddy effect. When the radius of injection structure inner arc is 2.0mm and coolant centrifugal angle is 84°, the flow field has the best flow characteristics. This scheme can optimize the stability and smoothness of liquid film spreading.
Key words:  Liquid propellant rocket engine  Thrust chamber  Liquid film cooling slot  Injection structure  Injection angle