引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1566次   下载 81 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于动态特性分析的涡扇发动机T-S模糊建模
仇小杰,陈杰,范白清
中国航发控制系统研究所,江苏 无锡 214063
摘要:
面向具备强非线性特征的航空发动机这一复杂对象,考虑其在宽广包线内动态特性复杂难以用有限个线性模型描述,提出一种基于发动机动态特性分析建立全包线涡扇发动机数学模型的方法。基于全包线动态特性分析,设计动态特性表征参数λ。利用K均值聚类算法分析包线内发动机特性,依据聚类的中心点建立全包线T-S模糊状态空间模型。开展了模型精度仿真验证,仿真结果表明,基于航空发动机动态特性分析建立的全包线T-S模糊状态空间模型基本无稳态误差,且计算时间约为3ms
关键词:  涡扇发动机  动态特性分析  动态特性表征参数  K均值聚类算法  T-S模糊模型
DOI:10.13675/j.cnki.tjjs.22010038
分类号:V231.1
基金项目:国家科技重大专项(2019-V-0003-0094)。
A Method Based on Dynamic Characteristic Analysis for Turbofan Engine T-S Fuzzy Model
QIU Xiao-jie, CHEN Jie, FAN Bai-qing
AECC Aero Engine Control System Institute,Wuxi 214063,China
Abstract:
Aero-engine is a complex system with strong nonlinearity which is quite difficult to be described by limited linear models. A new method based on the aero-engine dynamic characteristics analysis to establish the full envelope aero-engine linear model is proposed. The method defined a set of characterization parameters λ based on the dynamic characteristic analysis of the full envelope. The feather of these engine parameters is extracted by the K-means clustering algorithm. The full envelope T-S fuzzy sate space model is composed of linear model of the clustering extracted center points. The simulation on model accuracy verification is conducted, and the results show that the T-S fuzzy state space model is almost no steady error and the calculating time is about 3ms.
Key words:  Turbofan engine  Dynamic characteristic analysis  Dynamic characterization parameters  K-means clustering algorithm  T-S fuzzy model