引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1623次   下载 193 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于化学杂化和官能团相似耦合方法的RP-3航空煤油反应动力学简化模型构建
洪聪结1,张与阳1,湛昊晨1,刘靖1,全永凯2,惠鑫2,徐国强2,林宇震2,康玉东3,周雄3,邓远灏3,胡二江1,黄佐华1,张英佳1
1.西安交通大学 动力工程多相流国家重点实验室,陕西 西安 710049;2.北京航空航天大学 航空发动机研究院,北京 100191;3.中国航发四川燃气涡轮研究院,四川 成都 610500
摘要:
真实航空燃料通常包含几十至上百种组分,直接构建其化学反应动力学模型十分困难。本文利用官能团相似法(SCFG),结合实测RP-3航空煤油组分比例,提出了RP-3四组分模型替代物。利用流动反应器,获得了温度为550~1150K,压力为0.1 MPa下RP-3热解数据,基于化学杂化方法(Hybrid Chemistry),构建了以真实RP-3为单一原始组分的航空煤油化学反应动力学模型(XJTURP3-2021),模型得到宏观点火延迟、层流火焰速度以及微观组分浓度系统验证。基于误差传递的直接关系图法(DRGEP)和全局敏感性分析(FSSA)对模型进行简化,获得含41种组分、212个基元反应的RP-3简化模型(XJTURP3r-2021)。与详细模型和实验数据对比发现,XJTURP3r-2021能较好地复现热力边界对RP-3基础燃烧特征影响规律,为解决CFD仿真对反应源项初始组分数量约束和计算精度固有矛盾提供新思路。
关键词:  RP-3航空煤油  SCFG方法  HyChem方法  机理简化  化学反应动力学模型
DOI:10.13675/j.cnki.tjjs.210885
分类号:V231.1
基金项目:国家科技重大专项(J2019-III-0004-0047);中国航发四川燃气涡轮研究院外委课题(KTZX-030120210007);航空等离子体动力学国防科技重点实验室开放基金(614220220200103)。
Construction of Simplified Reaction Kinetic Model of RP-3 Aviation Kerosene Based on a Composed Method of Hybrid Chemistry and Similarity Criterion of Function Group
HONG Cong-jie1, ZHANG Yu-yang1, ZHAN Hao-chen1, LIU Jing1, QUAN Yong-kai2, HUI Xin2, XU Guo-qiang2, LIN Yu-zhen2, KANG Yu-dong3, ZHOU Xiong3, DENG Yuan-hao3, HU Er-jiang1, HUANG Zuo-hua1, ZHANG Ying-jia1
1.State Key Laboratory of Multiphase Flow in Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China;2.Research Institute of Aero-Engine,Beihang University,Beijing 100191,China;3.AECC Sichuan Gas Turbine Establishment ,Chengdu 610500,China
Abstract:
Commercial aviation fuel usually contains dozens to hundreds of hydrocarbon components, which makes it extremely difficult to directly construct reliable chemical kinetic model. In this study, a four-component surrogate model fuel based on the similarity criterion of function group (SCFG) was proposed, combined with the measured aviation kerosene (RP-3) component ratio. Pyrolysis data of RP-3 were obtained at initial pressure of 0.1MPa and at temperatures of 550~1100K in a flow reactor. A detailed reaction kinetic model (XJTURP3-2021) with the commercial RP-3 as a single original component was constructed based on the hybrid chemistry approach, and has been well validated by diverse fundamental parameters including ignition delay time, laminar burning velocity and species concentration. A simplified kinetic model (XJTURP3r-2021) with 41 species and 212 reactions was then obtained by using Directed Relation Graph with Error Propagation (DRGEP) and Full Species Sensitivity Analysis (FSSA) based on the XJTURP3-2021 model. Compared with both the detailed model and the experimental data, the simplified model (XJTURP3r-2021) can well reproduce the influence of thermal boundary parameters on basic combustion characteristics of RP-3. This study in general, provides a new way to solve the inherent contradiction between the constraint of initial component number of reaction source term and calculation accuracy in CFD simulation.
Key words:  RP-3 aviation kerosene  SCFG method  HyChem method  Mechanism simplification  Chemical reaction kinetics model