引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 512次   下载 98 本文二维码信息
码上扫一扫!
分享到: 微信 更多
多腔室凹槽对涡轮叶顶流动传热特性影响的数值研究
杜昆1,2,3,4,李华容1,3,4,王力泉1,高媛媛1,刘存良1,3,4
1.西北工业大学 动力与能源学院,陕西 西安 710072;2.西北工业大学 太仓长三角研究院,江苏 太仓 215400;3.西北工业大学 陕西省航空动力系统热科学重点实验室,陕西 西安 710129;4.西北工业大学 西北工业大学-喀山国立技术大学先进航空发动机热结构国际联合实验室,陕西 西安 710129
摘要:
为降低叶顶热负荷,抑制泄漏流,以GE-E3第一级叶栅为研究对象,将肋条结构应用到动叶顶部中,通过求解三维Reynolds-Averaged Navier-Stokes (RANS)方程和k-ω湍流模型,研究了多腔室凹槽对叶顶流动传热性能的影响。研究结果表明:随着肋条结构数目增多,常规凹槽由更多小腔室组成,叶顶换热系数逐渐减小。与平叶顶相比,具有格栅结构的多腔室凹槽叶顶其叶顶换热系数显著降低。凹槽腔室内刮削涡可有效降低泄漏流量,不同多腔室凹槽叶顶的泄漏流质量流量有着不同程度的降低。格栅结构在凹槽中起到“气动篦齿”作用,在0~20%的流向区域内泄漏流控制效果显著。
关键词:  涡轮动叶  多腔室凹槽  传热特性  叶顶泄漏  数值模拟
DOI:10.13675/j.cnki.tjjs.210555
分类号:V231.1
基金项目:国家科技重大专项基金(Y2019-VIII-0007-0168);国家自然科学基金(52006178);中央高校基本科研业务费专项资金(3102018zy019;3102020OMS701)。
Numerical Investigations of Multi-Cavity Tip Effects on Turbine Blade Tip Flow and Heat Transfer Characteristics
DU Kun1,2,3,4, LI Hua-rong1,3,4, WANG Li-quan1, GAO Yuan-yuan1, LIU Cun-liang1,3,4
1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China;2.Yangtze River Delta Research Institute,Northwestern Polytechnical University,Taicang 215400,China;3.Shaanxi Key Laboratory of Aeronautical Power System Thermal Science,Northwestern Polytechnical University, Xi’an 710129,China;4.NPU-KAI International Joint Laboratory of Advanced Aero-Engine Thermal Structure, Northwestern Polytechnical University,Xi’an 710129,China
Abstract:
In order to reduce the heat load and leakage flow rate in the turbine blade tip, the present research focus on the first stage turbine blade of GE-E3, applies the rib structure to the blade tip. Three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and standard k-ω turbulent model were utilized in all the present computations. The effects of multi-cavity tip on the blade tip leakage flow and heat transfer characteristic were numerically investigated. The numerical results show that as the number of ribs increases, the heat-transfer coefficients reduce on the blade tips composed of smaller tip cavities. Compared with the flat blade tip, the heat transfer coefficient of the multi-cavity tips with the grid structure is remarkably reduced. The scraping vortex in the cavity can effectively decrease the leakage flow. The mass flow rate of the leakage flow decreases to varying degrees for different multi-cavity tips. An aero-labyrinth liked sealing effect is formed by the grid structure, which has obvious leakage flow control effect in 0~20% stream-wise region.
Key words:  Turbine blade  Multi-cavity tip  Heat transfer characteristics  Tip leakage  Numerical simulation