引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 509次   下载 93 本文二维码信息
码上扫一扫!
分享到: 微信 更多
凹槽对涡轮叶片前缘换热特性影响的实验研究
叶林1,2,刘存良1,3,朱安冬1,陈磊4,李冰然1,朱惠人1,3
1.西北工业大学 动力与能源学院,陕西 西安 710129;2.清华大学 能源与动力工程系 热科学与动力工程教育部重点实验室,北京 100084;3.西北工业大学 陕西省航空动力系统热科学重点实验室,陕西 西安 710129;4.中国航发四川燃气涡轮研究院,四川 成都 610500
摘要:
为了探究带有凹槽造型的涡轮叶片前缘结构的换热特性,采用瞬态热色液晶技术研究了凹槽对涡轮叶片前缘外表面换热系数的影响,获得了不同主流雷诺数以及湍流度下涡轮叶片原始前缘结构及带两种不同深度凹槽的前缘结构外表面的换热系数分布数据,并采用努塞尔数评估对比了三种结构下的换热特性。实验结果表明:原始前缘结构存在高换热系数区,随着湍流度的增大,高换热核心区显著增大;由于凹槽对滞止区域的流动产生了影响,带凹槽的前缘结构在不同工况下均表现出将原始结构高换热核心区分割为凹槽两侧突出边缘的高换热区和槽内低换热区的分布特征;凹槽可以显著降低前缘表面的换热强度,带浅凹槽的前缘结构在前缘表面的面平均努塞尔数相比原始前缘结构降低约7.9%~14.5%,带深凹槽的前缘结构相比原始前缘结构降低约9.1%~20.9%;与主流雷诺数Reg=2.0×105相比,当Reg=1.5×105时,带凹槽的前缘结构相比原始结构的低换热优势更强
关键词:  涡轮叶片前缘  凹槽造型  凹槽深度  对流换热系数  瞬态热色液晶技术
DOI:10.13675/j.cnki.tjjs.210429
分类号:V231.1
基金项目:国家自然科学基金(51936008);陕西省杰出青年科学基金(2021JC-11);中国博士后科学基金(2021TQ0166)。
Experimental Study on Effects of Grooves on Heat Transfer Coefficient of Turbine Blade Leading Edge
YE Lin1,2, LIU Cun-liang1,3, ZHU An-dong1, CHEN Lei4, LI Bing-ran1, ZHU Hui-ren1,3
1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China;2.Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,Department of Energy and Power Engineering,Tsinghua University,Beijing 100084,China;3.Shaanxi Key Laboratory of Thermal Sciences in Aero-Engine System,Northwestern Polytechnical University, Xi’an 710129,China;4.AECC Sichuan Gas Turbine Establishment,Chengdu 610500,China
Abstract:
In order to investigate the heat transfer characteristics of leading-edge of the turbine blade with groove shape, the influence of groove on the heat transfer coefficient of leading-edge is studied by using the transient thermochromic liquid crystal technology. The distribution data of heat transfer coefficient of original leading-edge structure and leading-edge structures with two different depth grooves are obtained under different mainstream Reynolds numbers and turbulence intensities. The heat transfer characteristics of three structures are evaluated by Nusselt number. The experimental results show that: the high heat transfer coefficient region exists in the original leading-edge structure, and the high heat transfer core area increases with the increase of turbulence intensity. Due to the influence of groove on the flow in the stagnation region, under different conditions, the leading edge structure with groove shows the distribution characteristics of dividing the high heat transfer core region of the original structure into high heat transfer regions on both sides of the groove and low heat transfer region inside the groove. The groove can significantly reduce the heat transfer intensity of leading edge surface, the average Nusselt number of the leading edge with shallow grooves is about 7.9%~14.5% lower than that of the original structure, and the average Nusselt number of the leading edge with deep grooves is about 9.1%~20.9% lower than that of the original structure. Compared with Reg=2.0×105, when Reg=1.5×105, the low heat transfer advantage of the groove structure is stronger than that of the original structure.
Key words:  Turbine blade leading-edge  Groove shape  Groove depth  Heat transfer coefficient  Transient thermochromic liquid-crystal technology