引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 534次   下载 140 本文二维码信息
码上扫一扫!
分享到: 微信 更多
激光脉冲能量作用下隔离段激波形态及发展控制的数值研究
王旺1,2,刘凡1,3,严红1,3
1.西北工业大学 太仓长三角研究院,江苏 太仓 215400;2.空间物理重点实验室,北京 100076;3.西北工业大学 陕西省航空发动机内流动力学重点实验室,陕西 西安 710072
摘要:
为了寻求有效的流动控制方法来降低隔离段总压损失,基于非定常雷诺平均的Navier-Stokes方程,探究激光脉冲能量沉积对二维及三维隔离段流场马赫反射的控制效果。在来流马赫数分别为1.61和2.51的隔离段流场马赫反射上游,加入脉冲能量沉积,对比激励流场与基础流场。结果表明:能量沉积主要通过高温热核和其诱导的压力波两种方式对马赫反射结构施加作用,显著地影响了马赫反射结构,促使Ma=1.61来流工况下马赫杆的高度减小,马赫反射强度减弱;Ma=2.51来流工况下的马赫反射结构转变为稳定的正规反射,减小了总压损失。控制过程包括:(1)能量沉积产生的局部高温降低当地马赫数,减小马赫反射强度;(2)高温热核诱导的弓形波与马赫反射相互作用,马赫反射结构变形;(3)以反压形式影响马赫反射。
关键词:  激波控制  能量沉积  马赫反射  正规反射  隔离段  数值模拟
DOI:10.13675/j.cnki.tjjs.210311
分类号:V231.3
基金项目:国家自然科学基金(11672242)。
Numerical Study of Laser Pulse Energy Deposition on Shape and Development Control of Shock Wave in Isolator
WANG Wang1,2, LIU Fan1,3, YAN Hong1,3
1.Yangtze River Delta Research Institute,Northwestern Polytechnical University,Taicang 215400,China;2.Science and Technology on Space Physics Laboratory,Beijing100076,China;3.Shaanxi Key Laboratory of Internal Aerodynamics in Aero-Engine, Northwestern Polytechnical University,Xi’an 710072,China
Abstract:
In order to find an effective flow control method to reduce the total pressure loss in isolator, the unsteady Reynolds averaged Navier-Stokes equations are used to simulate the control effect of laser pulse energy deposition on the Mach reflection for the two and three-dimensional isolator. The laser pulse energy deposition is introduced upstream of the Mach reflection of the flow field in isolator with incoming flow Mach numbers of 1.61 and 2.51,respectively. Compared the excitation flow field with the basic flow field, results show that the energy deposition affects the Mach reflection mainlythrough the high temperature spot and its induced pressure waves, and it has a significant impact on the Mach reflection. At Mach number of 1.61, the energy deposition promotes the height of the Mach stem to reduce, and the intensity of the Mach reflection decreases accordingly. At Mach number of 2.51, the transformation of the Mach reflection into a stable regular reflection occurs, reducing the total pressure loss . The control process includes: (1) The local high temperature of the energy deposition reduces the local Mach number, thereby weakens the intensity of the Mach reflection. (2) The high temperature thermal spot induces the bow wave to interact with the Mach reflection, and the Mach reflection is deformed. (3) The energy deposition affects the Mach reflection in the form of the back-pressure.
Key words:  Shock control  Energy deposition  Mach reflection  Regular reflection  Isolator  Numerical simulation