引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 502次   下载 92 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于金属铝水反应的固体氧化物燃料电池/氦氙布雷顿循环动力系统研究
王佳宾1,徐虎1,董平1,陶春德1,郭兆元2
1.哈尔滨工程大学 动力与能源工程学院,黑龙江 哈尔滨 150000;2.中国船舶重工集团705研究所,陕西 西安 710000
摘要:
为了提高水下动力装置的能量密度,基于金属铝水反应高能量密度的特点,联合闭式布雷顿循环与固体氧化物燃料电池 (Solid oxide fuel cell,SOFC)构造了一种闭式无空气推进(Air independent propulsion,AIP)动力装置,以100kW输出功率为设计目标进行数学模型的建立,通过布雷顿循环与SOFC循环换热特点进行迭代分析,分别以最大化铝水放热量和提高铝水反应热品质为目标搭建了两个动力系统,并确定了联合动力装置的功率分配和主要参数的设计。结果表明:以提高铝水反应热品质为目标的系统在效率和能量密度方面更具优势。SOFC输出功率占50.98kW,布雷顿循环占49.13kW,系统发电效率为40.02%。
关键词:  固体氧化物燃料电池  闭式布雷顿循环  联合动力装置  热力性能分析  系统设计
DOI:10.13675/j.cnki.tjjs.210426
分类号:TK12
基金项目:中国博士后科学基金(227767)。
Solid Oxide Fuel Cell/Helium-Xenon Brayton Cycle Power System Based on Aluminum Water Combustion
WANG Jia-bin1, XU Hu1, DONG Ping1, TAO Chun-de1, GUO Zhao-yuan2
1.School of Power and Energy Engineering,Harbin Engineering University,Harbin 150000,China;2.705 Research Institute,China Shipbuilding Industry Corporation,Xi’an 710000,China
Abstract:
In order to improve energy density of the underwater power plant, an air independent propulsion (AIP) power system combining closed Brayton cycle and solid oxide fuel cell was constructed, which was based on the high energy density of the metal aluminum-water combustion. For the output power lever of 100kW, mathematical models of two kinds of AIP combined power systems were established, and analyzed the system parameters through the heat transfer characteristics of the Brayton cycle and the SOFC cycle. The goals of the research were to maximize the release heat of the aluminum-water combustion, improve the quality of the release heat of the aluminum-water combustion, optimize the power distribution and main parameter design of the combined power system. The results show that improving the heat quality of the aluminum-water combustion had more advantages on improving the efficiency and energy density of the system. The output power of SOFC is 50.98kW, the Brayton cycle is 49.13kW, and the power generation efficiency of the system is 40.02%.
Key words:  Solid oxide fuel cell  Closed Brayton cycle  Combined power system  Thermal performance analysis  System design