引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 771次   下载 81 本文二维码信息
码上扫一扫!
分享到: 微信 更多
八面体桁架结构在内冷通道中的流动传热特性研究
白晓辉1,2,刘存良1,2,孟宪龙1,2,杜昆1,2,中山顕1,3
1.西北工业大学 动力与能源学院,陕西 西安 710072;2.陕西省航空动力系统热科学重点实验室,陕西 西安 710072;3.日本静冈大学;工学部,日本 滨松 432-8561
摘要:
为探究八面体桁架结构在航空发动机热端部件内冷通道中的可应用性,掌握八面体桁架结构的流动传热特性,采用理论推导和三维数值模拟的方法,对八面体桁架单体的有效导热系数以及八面体桁架阵列结构的流动结构和传热性能开展了研究。首先,针对八面体桁架单体结构,推导出了考虑节点效应的有效导热系数关系式,并通过与数值计算结果对比,验证了其有效性。其次,针对八面体桁架阵列结构,开展了整体结构的三维数值计算,分析了其内部通道的流动结构和温度分布,获得了不同结构的流动阻力和对流传热系数随雷诺数的变化规律。最后,考虑到结构的综合传热性能,本文针对不同孔隙率的八面体桁架阵列结构,进行了基于相同泵功率下努塞尔数的对比。根据计算结果,本文给出了获得最佳传热性能的无量纲直径0.07~0.08,相应的孔隙率变化为 0.872~0.841。分析其原因,由于随着结构孔隙率的减小,即固体率的增加,对流传热强度不断提高,然而,当孔隙率减小到84.1%以下时,由于内通道中流动阻力骤然增大,导致传热效率降低。将八面体桁架结构应用于航空发动机热端部件内冷通道中,是同时出于高效冷却和力学性能的考虑,本文掌握八面体桁架阵列结构的流动传热特性,为其在实际工程中的应用提供了理论支撑。
关键词:  八面体桁架结构  内冷通道  三维数值模拟  有效导热系数  流动传热特性
DOI:10.13675/j.cnki.tjjs.201018
分类号:V231.1
基金项目:国家自然科学基金(52006179);中央高校基础科研费(G2020KY05106;31020190QD706)。
Flow and Heat Transfer Characteristics of Octet Truss Structure in Internal Cooling Channel
BAI Xiao-hui1,2, LIU Cun-liang1,2, MENG Xian-long1,2, DU Kun1,2, NAKAYAMA Akira1,3
1.College of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China;2.Key Laboratory of Thermal Science of Aviation Power System in Shaanxi Province,Xi’an 710072,China;3.Faculty of Engineering,Shizuoka University,Hamamatsu 432-8561,Japan
Abstract:
In order to explore the possibility of application of the octet truss structure in internal cooling channel in hot components of aeroengine, and understand its flow and heat transfer characteristics, the investigations both on effective thermal conductivity of an octet truss element and fluid structure and heat transfer performance of octet truss array structure have been carried out by exploiting methods of theoretical derivation and three-dimensional numerical simulation, respectively. First of all, the correlation of effective thermal conductivity which considers nodal effects has been derived out for an octet truss element, moreover, its effectiveness has been validated by comparing with numerical results. Subsequently, a series of full-detailed three-dimensional calculations has been carried out for octet truss array structure, in which the flow structure and temperature distribution have been analyzed, furthermore, the variation of friction factor and heat transfer coefficient with Reynolds number have been obtained. Finally, in consideration of heat transfer performance of the octet truss structure, the Nusselt numbers for octet truss structures with different porosity have been compared under equal pumping power. As a result, a reasonable range of dimensionless diameter which leads to an excellent heat transfer performance has been proposed as 0.07~0.08, whose corresponding porosity ranges in 0.872~0.841. The reason may be concluded that the heat transfer rate increases with the decrease of porosity, i.e., the increase of the solidity. However, when the porosity decreases to below 84.1%, the friction factor increases drastically, leading to the decrease of overall heat transfer efficiency. The proposal of the utilization of the octet truss in internal cooling channel in hot end components of aeroengine considers the advantages both of higher efficient cooling and mechanical performance. The result is helpful to provide theoretical support for application in practical engineering.
Key words:  Octet truss structure  Internal cooing channel  Three-dimensional numerical simulation  Effective thermal conductivity  Flow and heat transfer characteristic