引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 159次   下载 92 本文二维码信息
码上扫一扫!
分享到: 微信 更多
蓄热式太阳能热光伏-热推进双模系统换热特性数值模拟研究
张晏鑫1,2,鲍创1,閤海峰1,宋方舟1,高鹏3,刘向雷1
1.南京航空航天大学 能源与动力学院,江苏 南京 210016;2.中国空气动力研究与发展中心,四川 绵阳 621000;3.天津电源研究所 化学与物理电源技术重点实验室,天津 300384
摘要:
通过三维数值模拟研究蓄热式太阳能热光伏-热推进双模系统的蓄/释热特性和推进性能。在蓄热式太阳能热推进系统工程模型的基础上,通过射线光学的光路分析验证了聚光器设计的合理性,并获得吸热腔壁面能量分布情况,进一步研究了相变蓄热过程的影响因素。基于场协同原理对热光伏再生冷却结构进行了优化设计,使热光伏具有较好的散热特性,提高发电功率;通过整机流动换热仿真,分析了工质流体在推进器内部的换热情况。计算结果表明,蓄热式热推进器具有达到734s比冲和0.9N推力的推进性能,以及能够满足日蚀区微小卫星的供电和推力需求。
关键词:  太阳能热推进  蓄热  热光伏  场协同原理  比冲
DOI:10.13675/j.cnki.tjjs.200163
分类号:V439.6
基金项目:中央高校基本科研业务费专项资金(NE2017001);载人航天领域预先研究项目(17600502)。
Numerical Simulation of Heat Transfer Characteristics of Regenerative Solar Thermophotovoltaic-Propulsion Bi-Modal System
ZHANG Yan-xin1,2, BAO Chuang1, XIA Hai-feng1, SONG Fang-zhou1, GAO Peng3, LIU Xiang-lei1
1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;2.China Aerodynamics Research and Development Center,Mianyang 621000,China;3.Science and Technology on Power Sources Laboratory,Tianjin Institute of Power Sources,Tianjin 300384,China
Abstract:
The heat storage and heat release characteristics and propulsion performance of solar thermophotovoltaic-propulsion bi-modal system is investigated by numerical calculation. Based on the engineering design mathematic model of solar thermophotovoltaic-propulsion bi-modal system, the rationality of the concentrator design is verified by the ray optics, the energy distribution on the wall of the Receiver-Absorber-Converter (RAC) cavity is obtained, and the factors affecting the process of phase change heat storage are further studied. Based on the field synergy principle, the thermophotovoltaic regenerative cooling structure is optimized to make the thermophotovoltaic have better heat transfer characteristics and increase the power generation. Through the flow simulation of solar thermal propulsion system, the heat transfer characteristics of the working fluid in the thruster are analyzed. Finally, the calculated results indicate that the regenerative solar thermal thruster can obtain 734s specific impulse and 0.9N thrust, and can meet the power supply and thrust demand of micro-satellites in the eclipse area.
Key words:  Solar thermal propulsion  Thermal energy storage  Thermophotovoltaics  Field synergy principle  Specific impulse