引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 522次   下载 429 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于非线性有源自回归模型的船用凝汽器故障早期预警
李兴朔1,刘金福1,白明亮1,李献领2,刘东航3,颜培刚1,于达仁1
1.哈尔滨工业大学 能源科学与工程学院,黑龙江 哈尔滨 150001;2.武汉第二船舶设计研究所,湖北 武汉 430064;3.中国船舶工业系统工程研究院,北京 100036
摘要:
针对故障数据稀缺的现实情况,为实现船用凝汽器性能的准确评估以及灵敏故障早期预警,提出了基于非线性有源自回归模型的故障早期预警方法。考虑到凝汽器参数间存在的时序特性以及非线性特性,采用非线性有源自回归模型对参数间关系进行刻画并建立了面向故障早期预警的常模式模型。利用凝汽器物理模型的故障仿真数据进行试验,结果表明,提出方法对正常数据和故障早期数据的检测精度分别达到98.13%与100%。对比实验证明了考虑时序特性在船用凝汽器故障早期预警中的必要性。
关键词:  故障  船用凝汽器  非线性有源自回归模型  物理模型  时序信息  预警
DOI:10.13675/j.cnki.tjjs.200769
分类号:TK267
基金项目:国家重点研发计划(2017YFB0902100);热能动力技术重点实验室开放基金(TPL2017CA006)。
Fault Early Warning Method for Marine Condenser Based on Nonlinear Autoregressive Model with Exogenous Inputs
LI Xing-shuo1, LIU Jin-fu1, BAI Ming-liang1, LI Xian-ling2, LIU Dong-hang3, YAN Pei-gang1, YU Da-ren1
1.School of Energy Science and Engineering,Harbin Institute of Technology,Harbin 150001,China;2.Wuhan Second Ship Design and Research Institute,Wuhan 430064,China;3.Systems Engineering Research Institute,China State Shipbuilding Corporation,Beijing 100036,China
Abstract:
Facing the scarcity of actual fault data in practice, a fault early warning method based on a nonlinear autoregressive model with exogenous inputs was proposed to realize accurate performance evaluation and sensitive fault early warning for marine condenser. Considering the time-series information and nonlinear properties among relevant parameters of the marine condenser, the nonlinear autoregressive model with exogenous inputs was adopted to characterize the inherent relationship, and the normal pattern model for fault early warning was established. The feasibility of the proposed method is verified by experiments with data from an established condenser physical model, and the results show that the proposed method achieves 98.13% and 100% detection accuracy for normal data and fault data, respectively. The comparison experiment further proves the necessity of the consideration of the time-series information in the marine condenser fault early warning.
Key words:  Fault  Marine condenser  Nonlinear autoregressive model with exogenous inputs  Physical model  Time-series information  Early warning