引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 693次   下载 377 本文二维码信息
码上扫一扫!
分享到: 微信 更多
飞行环境模拟系统多容腔流-固传热建模
朱美印1,2,王曦1,2,裴希同3,张松3,但志宏3,缪柯强1,2,刘佳帅1,2,姜震1,2
1.北京航空航天大学 能源与动力工程学院,北京 100191;2.先进航空发动机协同创新中心,北京 100191;3.中国航发四川燃气涡轮研究院 高空模拟技术重点实验室,四川 绵阳 621703
摘要:
为了提升高空台飞行环境模拟系统(FESS)数值仿真平台的置信度,提出了一种多容腔流-固传热的建模方法,该方法考虑了混合器气流掺混、流-固传热、管道压力损失等因素的影响;建立了包括调节阀流量特性、液压伺服系统、混合器、混合器出口导流栅流量特性、整流子系统、管道容腔模型在内的部件模型库,并基于该模型库构建了仿真平台。为了验证本文建模方法的有效性,采用两次掺混试验数据对仿真模型进行对比验证表明,仿真结果与试验测量结果动态变化趋势基本一致,且温度、压力的最大误差分别不大于2.5K,2kPa。为了分析FESS控制系统的能力,假定了一次典型的发动机试验条件来进行仿真分析,仿真结果表明,FESS控制系统具备进行发动机平飞加速和等马赫数爬升试验的能力。
关键词:  高空模拟试验台  飞行环境模拟系统  多容腔建模  流-固传热  数值仿真
DOI:10.13675/j.cnki.tjjs.190628
分类号:V217+.21
基金项目:
Multi-Volume Fluid-Solid Heat Transfer Modeling for Flight Environment Simulation System
ZHU Mei-yin1,2, WANG Xi1,2, PEI Xi-tong3, ZHANG Song3, DAN Zhi-hong3, MIAO Ke-qiang1,2, LIU Jia-shuai1,2, JIANG Zhen1,2
1.School of Energy and Power Engineering,Beihang University,Beijing 100191,China;2.Collaborative Innovation Center for Advanced Aero-Engine,Beijing 100191,China;3.Science and Technology on Altitude Simulation Laboratory,AECC Sichuan Gas Turbine Establishment, Mianyang 621703,China
Abstract:
To improve modeling precision of digital simulation platform of flight environment simulation system (FESS) of Altitude Ground Test Facilities (AGTF), a multi-volume modeling method considering fluid-solid heat transfer is proposed. Considering the influence of mixer airflow mixing, fluid-solid heat transfer, and pipe pressure loss, a component model library was set up including control valve flow characteristic model, hydraulic servo system model, mixer model, mixer outlet air fence flow characteristic model, flow straightener subsystem model, and pipe volume model. A digital simulation platform of FESS is established based on the library. In order to verify the effectiveness of the modeling method proposed in this paper, two sets of mixing test data were used to do simulation verification, and the comparison results show that the dynamic variation trends of simulation and measurement result are basically the same and the maximum errors of temperature and pressure are less than 2.5K and 2kPa, respectively. To analysis the ability of FESS control system, a typical engine test condition is supposed to do the simulation analysis. The simulation results show that the FESS control system has the ability to do the Mach Dash and Zoom-Climb test.
Key words:  Altitude ground test facilities  Flight environment simulation system  Multi-volume modeling  Fluid-solid heat transfer  Digital simulation