摘要: |
某重点项目的船用燃气轮机领域提出了更高等级功率燃气轮机的要求。为了在研制周期内快速设计一型压气机,以现有机型为母型机进行模化设计,在母型机特性图上合理选择模化点,确定模化比,得到增容后模化机的叶片和几何通流结构,划分网格时,充分考虑叶顶间隙、倒角、引气孔、梳齿密封等,以更接近于工程实际情况,对模化机进行全三维数值模拟计算。结果表明,模化机设计点性能指标达到要求,非设计工况喘振裕度基本与母型机相同,模化后叶顶相对间隙的降低会带来阻塞点流量的升高、失速点流量的降低,导致低转速下喘振裕度的升高和高转速下喘振裕度的降低。总体来说,模化增容设计继承了母型机优良的气动性能,为快速、高效研发新机型提供宝贵经验。 |
关键词: 舰船燃气轮机压气机 母型压气机 模化设计 数值模拟 性能分析 |
DOI:10.13675/j.cnki.tjjs.200377 |
分类号:TK473 |
基金项目:国家科技重大专项(2017-Ⅱ-0006-0019)。 |
|
Study on Capacity Increasing of High-Power Marine Gas Turbine Compressor by Modeling Design |
XU Ning1,2, WANG Zuo-xin1,2, LI Dong1,2, JIANG Bin3
|
1.No.703 Research Institute,China State Shipbuilding Corporation,Harbin 150078,China;2.National Engineering Laboratory for Ship and Marine Engineering Power System—Marine Engineering Gas Turbine Laboratory,Harbin 150078,China;3.College of Power and Energy Engineering,Harbin Engineering University,Harbin 150001,China
|
Abstract: |
The field of marine gas turbine has presented higher power gas turbine requirement in a major project. In order to design a compressor quickly in the design period, modeling design was done based on the existing model. First, the reasonable modeling point on the characteristic graph of the prototype compressor was chosen to determine the modeling ratio, and the blade and flow-path of the modeling compressor were obtained after capacity increase. When meshing, in order to get closer to the actual situation, the tip clearance, fillet, air-bleed hole, and comb seal were taken into account. By the full 3D numerical simulation of the modeling compressor, the results show that the design point targets meet the requirement. The surge margin of the modeling compressor is basically the same as that of the prototype compressor on off-design operating conditions. After modeling, the decrease of tip relative clearance leads to the mass-flow enlargement at the choking point but reduction at the stall point. At the same time, it leads to the surge margin enlargement at low speeds but reduction at high speeds. In general, modeling design inherits the excellent aerodynamic performance of the prototype compressor. The paper provides valuable experience for rapid and efficient development of new compressors. |
Key words: Marine gas turbine compressor Prototype compressor Modeling design Numerical simulation Performance analysis |