引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 517次   下载 440 本文二维码信息
码上扫一扫!
分享到: 微信 更多
大功率舰船燃气轮机压气机增容模化设计研究
徐宁1,2,汪作心1,2,李冬1,2,姜斌3
1.中国船舶集团有限公司第七〇三研究所,黑龙江 哈尔滨 150078;2.船舶与海洋工程动力系统国家工程实验室—海洋工程燃气轮机实验室,黑龙江 哈尔滨 150078;3.哈尔滨工程大学 动力与能源工程学院,黑龙江 哈尔滨 150001
摘要:
某重点项目的船用燃气轮机领域提出了更高等级功率燃气轮机的要求。为了在研制周期内快速设计一型压气机,以现有机型为母型机进行模化设计,在母型机特性图上合理选择模化点,确定模化比,得到增容后模化机的叶片和几何通流结构,划分网格时,充分考虑叶顶间隙、倒角、引气孔、梳齿密封等,以更接近于工程实际情况,对模化机进行全三维数值模拟计算。结果表明,模化机设计点性能指标达到要求,非设计工况喘振裕度基本与母型机相同,模化后叶顶相对间隙的降低会带来阻塞点流量的升高、失速点流量的降低,导致低转速下喘振裕度的升高和高转速下喘振裕度的降低。总体来说,模化增容设计继承了母型机优良的气动性能,为快速、高效研发新机型提供宝贵经验。
关键词:  舰船燃气轮机压气机  母型压气机  模化设计  数值模拟  性能分析
DOI:10.13675/j.cnki.tjjs.200377
分类号:TK473
基金项目:国家科技重大专项(2017-Ⅱ-0006-0019)。
Study on Capacity Increasing of High-Power Marine Gas Turbine Compressor by Modeling Design
XU Ning1,2, WANG Zuo-xin1,2, LI Dong1,2, JIANG Bin3
1.No.703 Research Institute,China State Shipbuilding Corporation,Harbin 150078,China;2.National Engineering Laboratory for Ship and Marine Engineering Power System—Marine Engineering Gas Turbine Laboratory,Harbin 150078,China;3.College of Power and Energy Engineering,Harbin Engineering University,Harbin 150001,China
Abstract:
The field of marine gas turbine has presented higher power gas turbine requirement in a major project. In order to design a compressor quickly in the design period, modeling design was done based on the existing model. First, the reasonable modeling point on the characteristic graph of the prototype compressor was chosen to determine the modeling ratio, and the blade and flow-path of the modeling compressor were obtained after capacity increase. When meshing, in order to get closer to the actual situation, the tip clearance, fillet, air-bleed hole, and comb seal were taken into account. By the full 3D numerical simulation of the modeling compressor, the results show that the design point targets meet the requirement. The surge margin of the modeling compressor is basically the same as that of the prototype compressor on off-design operating conditions. After modeling, the decrease of tip relative clearance leads to the mass-flow enlargement at the choking point but reduction at the stall point. At the same time, it leads to the surge margin enlargement at low speeds but reduction at high speeds. In general, modeling design inherits the excellent aerodynamic performance of the prototype compressor. The paper provides valuable experience for rapid and efficient development of new compressors.
Key words:  Marine gas turbine compressor  Prototype compressor  Modeling design  Numerical simulation  Performance analysis