摘要: |
针对核主元分析(KPCA)方法难以选择合适核函数的问题,提出了一种基于自适应核主元分析的传感器故障检测方法,根据训练数据对核函数进行自适应修正,使核函数适应给定的训练数据。对常规数据标准化处理方法进行了改进,提出了一种“均值化”的处理方法,使处理后的数据既能消除不同变量幅值和量纲的影响,又能反映训练数据的全部信息。将此方法应用于机载电动静液作动器(Electro-Hydrostatic Actuator,EHA)系统的传感器故障检测,结果表明,此方法比常规KPCA方法更为先进,具有更好的故障检测性能。 |
关键词: 自适应核函数 核主元分析 传感器 故障检测 EHA系统 |
DOI: |
分类号: |
基金项目:国家自然科学基金(61074007);陕西省自然科学基金(2012JM8016);总装预研基金。 |
|
Sensor Fault Detection for EHA System Based on Adaptive Kernel Principal Component Analysis |
ZHU Xi-hua1,LI Ying-hui1,LIU Cong1,LI Ning1,ZHANG Peng2
|
(1. School of Aeronautics and Astronautics Engineering,Air Force Engineering University,Xi ’ an 710038,China;2. School of Air Traffic Control and Navigation,Air Force Engineering University,Xi ’ an 710051,China)
|
Abstract: |
For the problem that it is hard to choose the kernel function of kernel principal component analysis ( KPCA ), a novel adaptive KPCA method for sensor fault detection is presented. The kernel function is modified adaptively according to the training date , so the kernel function can adapt to the given training date. Besides , the common method for data standardization processing is modified , an‘equalization’processing method is presented , which can eliminate the influence caused by amplitudes and dimensions of different variables , and the entire information of the training data can be reflected at the same time. Finally , an application of the proposed method is given in the sensor fault detection for airborne Electro-Hydrostatic Actuator ( EHA ) system , and the simulation results show that the proposed method is more advanced than the general KPCA , and it has much nicer performance in fault detection. |
Key words: Adaptive Kernel Function Kernel Principal Component Analysis Sensor Fault Detection EHA System |