引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1527次   下载 938 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于自适应核主元分析的EHA系统传感器故障检测
朱喜华1,李颖晖1,刘 聪1,李 宁1,张 鹏2
(1. 空军工程大学 航空航天工程学院,陕西 西安 710038;2. 空军工程大学 空管领航学院,陕西 西安 710051)
摘要:
针对核主元分析(KPCA)方法难以选择合适核函数的问题,提出了一种基于自适应核主元分析的传感器故障检测方法,根据训练数据对核函数进行自适应修正,使核函数适应给定的训练数据。对常规数据标准化处理方法进行了改进,提出了一种“均值化”的处理方法,使处理后的数据既能消除不同变量幅值和量纲的影响,又能反映训练数据的全部信息。将此方法应用于机载电动静液作动器(Electro-Hydrostatic Actuator,EHA)系统的传感器故障检测,结果表明,此方法比常规KPCA方法更为先进,具有更好的故障检测性能。
关键词:  自适应核函数  核主元分析  传感器  故障检测  EHA系统
DOI:
分类号:
基金项目:国家自然科学基金(61074007);陕西省自然科学基金(2012JM8016);总装预研基金。
Sensor Fault Detection for EHA System Based on Adaptive Kernel Principal Component Analysis
ZHU Xi-hua1,LI Ying-hui1,LIU Cong1,LI Ning1,ZHANG Peng2
(1. School of Aeronautics and Astronautics Engineering,Air Force Engineering University,Xi ’ an 710038,China;2. School of Air Traffic Control and Navigation,Air Force Engineering University,Xi ’ an 710051,China)
Abstract:
For the problem that it is hard to choose the kernel function of kernel principal component analysis ( KPCA ), a novel adaptive KPCA method for sensor fault detection is presented. The kernel function is modified adaptively according to the training date , so the kernel function can adapt to the given training date. Besides , the common method for data standardization processing is modified , an‘equalization’processing method is presented , which can eliminate the influence caused by amplitudes and dimensions of different variables , and the entire information of the training data can be reflected at the same time. Finally , an application of the proposed method is given in the sensor fault detection for airborne Electro-Hydrostatic Actuator ( EHA ) system , and the simulation results show that the proposed method is more advanced than the general KPCA , and it has much nicer performance in fault detection.
Key words:  Adaptive Kernel Function  Kernel Principal Component Analysis  Sensor  Fault Detection  EHA System