引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1554次   下载 0 本文二维码信息
码上扫一扫!
分享到: 微信 更多
航空发动机状态监视、故障诊断研究及验证
薛薇, 郭迎清, 李睿
西北工业大学 动力与能源学院,陕西 西安 710072
摘要:
提出了发动机状态监视、故障诊断的理论方法并搭建了该系统的软硬件平台,为建立机载发动机健康管理系统奠定了坚实的基础。首先,建立并验证了含有健康参数的发动机线性化模型,在模型的基础上设计了用于故障诊断的卡尔曼滤波器;其次,用设计好的滤波器可以准确估计出反应发动机运行状态的不可测参数;随后又用了一组卡尔曼滤波器诊断、隔离了传感器故障;最后,介绍了该部分机载系统原理样机的软硬件配置,并进行了算法平台验证,从操作和实现方式上验证了软硬件平台。该设计满足算法需求且界面人性化、易于操作。
关键词:  航空发动机  健康蜕化  不可测参数  状态监视  故障诊断
DOI:
分类号:
基金项目:
Algorithm and experimental validation for condition monitoring,fault detection for gas turbine engine
XUE Wei, GUO Ying-qing, LI Rui
School of Power and Energy, Northwestern Polytechnical Univ., Xian 710072, China
Abstract:
The method of steady-state condition monitoring and fault detection of gas turbine was proposed and tested. This part is critical to the aircraft healthy management system. Firstly, the linear state-space model containing the health parameters was setup here. Secondly, the non-measurement performance parameters were estimated accurately. Then, a bank of Kalman filters were used for fault detection and isolation. At last, a platform containing software and hardware was setup for the condition monitoring and fault detection. The results show that this platform works well and easy to operate.
Key words:  Aircraft gas turbine engine  Health deterioration  Unmeasured parameters  Steady-state condition monitoring  Fault detection