引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1327次   下载 637 本文二维码信息
码上扫一扫!
分享到: 微信 更多
求解航空发动机数学模型的混合智能方法
杨伟, 冯雷星, 彭靖波, 王海涛
空军工程大学工程学院
摘要:
针对传统求解方法收敛性不强而遗传算法求解效率较低的问题,利用BP神经网络逼近发动机平衡方程的反函数,将求解结果作为Newton-Raphson法的初值,提出了求解模型的混合智能方法。仿真结果表明,该方法可以保证非线性数学模型在整个飞行包线范围内收敛,与遗传算法相比又提高了求解效率。
关键词:  航空发动机  数学模型  平衡方程  神经网络
DOI:
分类号:TP18;V231
基金项目:
An intelligent algorithm for solution of nonlinear mathematical model for aeroengine
YANG Wei, FENG Lei-xing, PENG Jing-bo, WANG Hai-tao
Engineering Inst.,Air Force Engineering Univ.,Xi’an 710038,China
Abstract:
Current solutions are not always convergent while genetic algorithm is inefficient.Because of this,BP neural networks was used to approach the inverse function of balance equations,and the approximate solution was used as the initial value of Newton-Raphson algorithm,thus an intelligent algorithm is proposed.Simulation results show that this algorithm can make nonlinear mathematical model for aeroengine convergent in the entire flight envelope,and also has higher efficiency compared with genetic algorithm.
Key words:  Aeroengine  Mathematical model  Balance equations  Neural networks