摘要: |
分析研究了量子遗传算法(Quantum Genetic A lgorithm-QGA)的原理及其优势,将有指导的群体灾变及多宇宙并行演化策略引入量子遗传算法,改善其收敛性。以理想二阶系统为参考模型,实际系统响应曲线与参考模型响应曲线误差积分为目标函数,使用量子遗传算法进行发动机PID控制器参数优化并进行了数字仿真。仿真结果表明,量子遗传算法具有较好的全局收敛能力,应用于PID控制器控制参数优化后,控制器的控制效果良好,其在发动机控制系统中有较高的应用价值。 |
关键词: 航空发动机 量子遗传算法+ 量子计算+ PID控制器+ 参数最优化 |
DOI: |
分类号:V233.7 |
基金项目:国家自然科学基金项目(50576033);航空科学基金资助项目(04C52019) |
|
Application of quantum genetic algorithm to aero-engine PID control systems |
SUN Feng-cheng1, SUN Jian-guo2, ZHANG Hai-bo3
|
1.Coll.of Energy and Power,Nanjing Univ.of Aeronautics and Astronautics,Nanjing 210016,China;2.Coll.of Energy and Power,Nanjing Univ.of Aeronautics and Astronautics,Nanjing 210017,China;3.Coll.of Energy and Power,Nanjing Univ.of Aeronautics and Astronautics,Nanjing 210018,China
|
Abstract: |
The theory and advantages of Quantum Genetic Algorithm were analyzed.The guided catastrophe of population and multi-space parallel evolution strategy was added to QGA to improve its global convergence.QGA was applied to aero-engine control systems which use the ideal second-order system to be the reference model.The objective function is the integral of error between aero-engine response and reference model response.QGA was used to optimize aero-engine PID controller parameter.Results of digital simulation were given,which show that QGA has good search capability,and it has application potential in aero-engine control systems. |
Key words: Aircraft engine Quantum genetic algorithm+ Quantum calculation+ PID controller+ Parameter optimization |