|
|
|
本文已被:浏览 1420次 下载 675次 |
 码上扫一扫! |
|
基于小波分形和一类辨识的航空发动机故障诊断 |
罗俊1, 何立明2, 陈超3
|
1.西安空军工程大学工程学院 陕西西安710038;2.西安空军工程大学工程学院 陕西西安710039;3.西安空军工程大学工程学院 陕西西安710040
|
|
摘要: |
在支持向量机理论的基础上,针对支持向量机的二类辨识传统,引入了基于支持向量机的一类辨识理论。设计了航空发动机几种典型故障的一类分类器,使得发动机的故障诊断更加简单可行。同时,将小波分形方法引入到航空发动机振动信号的特征提取中。通过对航空发动机典型故障的成功诊断,证明了该方法的有效性。 |
关键词: 航空发动机 一类辨识+ 支持向量机+ 小波分形+ 故障诊断 |
DOI: |
分类号:V263.6 |
基金项目: |
|
Aeroengine fault diagnoisis based on one-class classification and wavlet-fractal |
LUO Jun1, HE Li-ming2, CHEN Chao3
|
1.Engineering Inst.,Air Force Engineering Univ.,Xi’an 710038,China;2.Engineering Inst.,Air Force Engineering Univ.,Xi’an 710039,China;3.Engineering Inst.,Air Force Engineering Univ.,Xi’an 710040,China
|
Abstract: |
Based on SVM(support vector machines) theory,one-class identification theory was introduced.Several classification models,which make the aeroengine fault diagnosis become more simple and viable,were designed based on one-class identification theory.In addition,wavlet-fractal was used to extract feature of aeroengine vibration data.Successful application has been achieved to detect several typical fault of aeroengine.The results show that the one class identification can provide a new effective technology to reveal fault of aeroengine. |
Key words: Aeroengine One-class identification+ SVM+ Wavlet-fractal Fault diagnosis |
|
|
|
|