引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1541次   下载 612 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于RBF神经网络的压气机特性仿真
彭靖波, 谢寿生
军工程大学工程学院 陕西西安710038
摘要:
为克服传统仿真方法误差较大的问题,提出了一种基于RBF(多变量插值的径向基函数)神经网络的压气机特性仿真方法。利用RBF神经网络能逼近任意非线性系统的特点,对压气机特性进行了拟合。试验结果表明,此方法具有精度高,收敛速度快等优点,可广泛运用于发动机数值仿真及控制模拟等领域。
关键词:  RBF神经网络+  压气机特性  仿真  非线性系统
DOI:
分类号:V233
基金项目:
Compressor characteristic simulation based on RBF neural network
PENG Jing-bo, XIE Shou-sheng
Engineering Inst.,Air force Engineering Univ.,Xi’an 710038,China
Abstract:
To overcome the weakness of traditional method,a simulation method of compressor in aeroengine based on RBF neural network was developed.According to the character of RBF neural network that it can approach any nonlinear system,compressor characteristic was simulated.The result implies that this method has high precision and fast convergence pace and it can be applied to many fields such as aeroengine numeral simulation,control simulation and so on.
Key words:  RBF neural network~+  Compressor characteristic  Simulation  Nonlinear system