引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1347次   下载 779 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于ANFIS的涡轮发动机风车工况建模仿真
武志文, 于达仁, 牛军, 郭钰锋
哈尔滨工业大学能源科学与工程学院 黑龙江哈尔滨150001
摘要:
小样本情况下神经网络模型泛化能力不足的缺陷限制了其在涡喷发动机风车工况建模中的应用。在十组风车工况实验数据的基础上建立了涡喷发动机风车工况的神经网络模型, 并且利用人们对涡喷发动机动静态、相似参数以及剩余功率与加速度的关系等先验知识不断对神经网络的输入变量进行变换, 逐次减少神经网络的训练样本数目, 最终只用一组训练样本就可以训练出泛化能力较强的神经网络模型, 大大提高了小样本情况下神经网络的泛化能力。仿真结果表明, 该方法简单有效。
关键词:  涡轮喷气发动机  风车工况  模糊神经网络  先验知识
DOI:
分类号:V231
基金项目:
Turbojet modeling and simulation in wind milling based on ANFIS
WU Zhi-wen, YU Da-ren, NIU Jun, GUO Yu-feng
School of Energy Science and Engineering, Harbin Inst. of Technology, Harbin 150001,China
Abstract:
The deficiency of weak generalization ability in the case of small sample size has restricted neural (network’s) application in modeling of wind milling. Based on ten samples experimental data of wind milling, a neural network’s model of wind milling is built. By incorporating priori knowledge of dynamic and static state of rotor, similar parameters and the relationship between residual power and acceleration, the training samples numbers can be decreased step by step. Finally a neural network model of wind milling, which has a good generalization ability, can be set up in the case of just one training sample. The incorporation of priori knowledge greatly improves neural network’s generalization ability. Results of the simulation prove that the method is simple and effective.
Key words:  Turbojet engine  Wind milling  Fuzzy neural network  Priori knowledge