引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1195次   下载 777 本文二维码信息
码上扫一扫!
分享到: 微信 更多
应用BP-ART混合神经网络的推进系统状态监控实时系统(英文)
杨尔辅1,2, 张振鹏1,2, 刘国球1,2, 崔定军1,2
1.北京航空航天大学宇航学院!北京;2.100083
摘要:
应用BP-ART混合神经网络提出了一种供推进系统状态监控实时使用的系统,其拓扑结构为: 第一层处理单元由BP神经网络组成, 每个BP网络代表一个相应的推进系统组件; 第二层处理单元为一个ART神经网络, 网络的每一个输出代表推进系统的一种“健康状态”, 据此可对其故障进行“诊断”。该混合结构充分发挥了两类网络的优点, 给出的具体应用实例也显示出在推进系统实时状态监控与故障诊断应用中的有效性
关键词:  液体推进剂火箭发动机  发动机故障  故障诊断  人工神经元网络  实时显示
DOI:
分类号:TP277
基金项目:国家自然科学基金资助项目;国家教委高等学校博士学科点专项科研基金资助项目
REAL-TIME SYSTEM FOR CONDITION MONITORING OF PROPULSION SYSTEM USING BP-ART HYBRID NEURAL NETWORKS
Yang Erfu,Zhang Zhenpeng,Liu Guoqiu,Cui Dingjun
School of Astronautics,Beijing Univ of Aeronautics and Astronautics,Beijing,100083
Abstract:
A system’s architecture for condition monitoring of propulsion system using BP ART hybrid neural networks was presented The topology of this hybrid architecture was:the first processing unit consisted of BP(Back Propagation)neural networks,one BP network per subassembly,the second unit was made up of ART(Adaptive Resonance Theory)neural network which had an autoassociative architecture,only one network for the whole propulsion system Each output of ART network represented a“health state”of propulsion system The hybrid architecture was made full uses of advantages of every neural network An application example of this system wasA system’s architecture for condition monitoring of propulsion system using BP ART hybrid neural networks was presented The topology of this hybrid architecture was:the first processing unit consisted of BP(Back Propagation)neural networks,one BP network per subassembly,the second unit was made up of ART(Adaptive Resonance Theory)neural network which had an autoassociative architecture,only one network for the whole propulsion system Each output of ART network represented a“health state”of propulsion system The hybrid architecture was made full uses of advantages of every neural network An application example of this system was illustrated,which demonstrated that this hybrid neural networks’ system could be implemented effectively in developing an advanced real time system for condition monitoring and fault diagnosis of propulsion system
Key words:  Liquid propellant rocket engine  Engine failure  Fault diagnosis  Artificial neural network  Real time display