引用本文:
【打印本页】   【HTML】 【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1114次   下载 566 本文二维码信息
码上扫一扫!
分享到: 微信 更多
复合固体推进剂燃烧性能模拟计算的神经网络方法
邓鹏图, 田德余, 庄逢辰
国防科技大学材料科学与应用化学系
摘要:
在总结已有燃烧模型的基础上,重点考虑压强、氧化剂的重均粒径、氧化剂的质量浓度三种主要影响因素,提出了一种基于误差反传(BP)神经网络的复合固体推进剂燃烧性能模拟计算方法,计算结果和实验值吻合较好,这为推进剂配方的计算机辅助设计提供了一种新方法。
关键词:  神经元机  复合推进剂  推进剂燃速  计算化学
DOI:
分类号:V512.3
基金项目:
A NEURAL NETWORK FOR MODELING CALCULATIONS FOR COMPOSITE PROPELLANTS
Deng Pengtu, Tian Deyu, Zhuang Fengchen
Dept. of Material Science and Applied Chemistry, National Univ.of Defense Technology, Changsha, 410073
Abstract:
he traditional modeling of composite propellant combustion, which strives to representthe combustion process in mathematical terms, is restricted by the knowledge of the combustionmechanism. In this paper, a new scheme has been proposed to calculate the combustion of compositepropellants without considering the specific combustion processes by applying the back-propagation(BP) neural network, which has the capability to "learn" system characteristics through nonlinearmapping. The computed results are in good agreement with the experimental data, which shows thatthe scheme offers a new way for CAD of propellant formulation.
Key words:  Neural machine  Composite propellant  Propellant burning rate  Computational chemistry