摘要: |
不等熵一维定常管流控制方程的数值解法,已有许多讨论,但大多局限于某些特定情况,特别是控制方程在奇点(M=1)附近的计算,还没有一个简便的方法.本文引进新变量,把方程变为非奇异的,提出了对各种不等熵流都适用的数值解法.由于引进了喉部条件,保证了数值解的唯一性.经过对模型方程的计算精度分析,证明该数值解除了在奇点附近稍有误差外,其它地方与精确解一致.本文最后给出了该方法在无喷管发动机内弹道计算中的应用. |
关键词: 非平衡流 二相流 数值解 无喷管火箭发动机 |
DOI: |
分类号: |
基金项目: |
|
NUMERICAL SOLUTION OF ANISENTROPIC ONE DIMENSIONAL STEADY FLOW |
Fang Dingyou
|
National University of Defence Technology
|
Abstract: |
The numerical methods for solving governing equations of anisen-tropic one-dimensional steady flow have been discussed in many literaries.But most methods presented cann’t be applied to anisentropic flow with singularity at M (Mach number) = 1,and cann’t ensure that the solution is unique.In this paper, the numerical method is presented for solving go-verning equations with singularity at M=1, Because the throat condition is used in computation, the numerical result is unique.The accuracy analysis of model equations shows that the numerical results are consistent with the accurate results except for singular point,and the relative error is less then 0.3% in the vicinity of singular point. The interior ballistic calculation of nozzleless motor is demonstrated by using the presented method in this paper. |
Key words: Non-equilibrium flow Two-phase flow Numerical Solution Nozz-leless rocket engine |