微通道内低马赫数气体的流动与换热特性理论研究*

王子豪,梁国柱

(北京航空航天大学 宇航学院,北京 102206)

摘 要: 微通道换热器由于换热系数高、质量小等优点,在微电子系统与航空航天等领域具有极大的应用价值,但截至目前人们对微通道内流体的流动与换热特性仍知之甚少。本文针对平行平板式微通 道,在连续介质区、低马赫数以及粘性热可忽略的情形下,采用分离变量法导出并简化了均匀热流边界 条件下变物性气体的二维层流流动与换热过程的控制方程,进而计算得到了气体速度、压力、温度在通 道内的分布规律,上述计算结果与对原始控制方程进行高精度直接数值求解的结果之间具有较好的一致 性。研究结果表明:当马赫数小于0.3时,微通道的尺寸效应使得任一横截面上变物性气体的流动和换 热参数分布与常物性下的分布存在相似性,气体密度沿通道长度方向的变化不对摩擦系数和努塞尔数的 沿程分布造成显著影响;在给定通道结构和进出口参数的情况下,通道内气体密度的减小和流速的增大 不能提高对流换热系数,对流换热系数可通过经典理论予以计算;相比常规尺寸通道,微通道内气体的 加速过程更加显著,粘性切应力对加速过程起主导作用,并随马赫数的增大而增大;摩擦损失是气体在 微通道内损失的主要部分。相关工作可为微通道换热器设计与高马赫数下流动特征的研究提供参考。

关键词:微通道;流动;换热;分离变量法;有限体积法

中图分类号: V432 文献标识码: A 文章编号: 1001-4055 (2022) 05-210007-12 **DOI**: 10.13675/j.cnki. tjjs. 210007

Theoretical Study on Flow and Heat Transfer Characteristics of Gas at Low Mach Number in Microchannels

WANG Zi-hao, LIANG Guo-zhu

(School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 102206, China)

Abstract: Microchannel heat transfer exchangers have great application value in microelectronic systems, aerospace and other fields due to high heat transfer coefficient and small mass. However, little is known about the specific flow and heat transfer characteristics in microchannels. Assuming gas is in continuum zone with low Mach number and viscous heat can be ignored, this paper adopts the method of separation of variables to simplify the governing equations of the two-dimensional gas flow and heat transfer problem with variable properties in parallel plate microchannels within uniform heat flux in the laminar region. The distributions of velocity, pressure and temperature within the channel are figured out, and the above results are in good agreement with the results obtained by direct numerical solution of the original governing equations. The results show that the size-effect of the microchannel leads to the similarity between the distribution of flow and heat transfer parameters of variable properties gas at any cross section and that under normal physical properties, and the change of gas density along the channel does not affect the distribution of friction coefficient and Nusselt number along the channel. If the

* 收稿日期: 2021-01-04;修订日期: 2021-03-17。

作者简介:王子豪,博士生,研究领域为微通道流动与换热。

通讯作者:梁国柱,博士,教授,研究领域为火箭发动机。

引用格式: 王子豪,梁国柱. 微通道内低马赫数气体的流动与换热特性理论研究[J]. 推进技术, 2022, 43(5):210007. (WANG Zi-hao, LIANG Guo-zhu. Theoretical Study on Flow and Heat Transfer Characteristics of Gas at Low Mach Number in Microchannels[J]. *Journal of Propulsion Technology*, 2022, 43(5):210007.)

channel structure and inlet and outlet parameters are given, the convection heat transfer coefficient cannot be increased by the decrease of gas density and the increase of velocity in the channel, which can be calculated by classical theory. Compared with the conventional size channel, the gas acceleration process in the microchannel is more significant, and the viscous shear stress plays a dominant role in the acceleration process and is enhanced with the increase of Mach number; friction loss is the main part of gas loss in microchannels. This work can provide references for the design of microchannel heat exchangers and the study of flow characteristics at high Mach number.

Key words: Microchannel; Flow; Heat transfer; Separation of variables; Finite volume method

符号表

$c_{\rm f}$	Fanning摩擦系数	$T_{\rm w}/{ m K}$	壁面固体温度
$c_p/(\mathrm{J}/(\mathrm{kg}\boldsymbol{\cdot}\mathrm{K}))$	流体定压比热	<i>u</i> /(m/s)	流体速度沿轴向的分量
$h/(W/(m^2 \cdot K))$	对流换热系数	$u_{\rm max}/({\rm m/s})$	横截面上流体最大速度
<i>i</i> /(J/kg)	比焓	<i>U</i> /(m/s)	流体平均速度
k	气体比热比	<i>v</i> /(m/s)	流体速度沿高度方向的分量
<i>L</i> /m	通道长度	$\Delta/{ m m}$	通道高度的一半
<i>m</i> /(kg/s)	通道内总流量的一半	$\Delta_{ m c}$	式(27)定义的无量纲数
p/Pa	流体热力学压强	θ	式(13)中的常数
$q_{\rm s}/({ m W/m^2})$	壁面处热流密度	$\lambda / (W / (m \cdot K))$	导热系数
$R_{\rm m}/(J/({\rm kg}\cdot K))$	气体常数	$\mu/(Pa \cdot s)$	动力粘度
<i>T</i> /K	流体热力学温度	$ ho/(kg/m^3)$	密度
$T_{\rm m}/{ m K}$	流体混合平均温度	$\tau_{\rm s}/{\rm Pa}$	壁面切向应力
T_{s}/K	壁面处流体温度	arphi	无量纲速度分布函数

1 引 言

在近五十年内,随着微电子机械系统(MEMS)技术的迅速发展,微通道换热设备与微通道内流体的流动与换热特性逐渐成为相关专业与学科的热点研究方向。

微通道一般指水力直径小于 1mm 的流道,与常 规尺寸的通道相比,流体在微通道内具有更强的传 热能力。早期由 Tuckerman 等^[1]研制的以液态水为冷 却剂的微通道散热器可实现对热流密度达 790W/cm² 的电子系统的有效散热,因此在相同的换热量下,微 通道换热设备将具有更小的体积与质量,在航空航 天等同时具有高换热量的需求和尽可能小的设备 质量和体积要求的领域内有极大应用价值。由英 国 REL 公司提出的协同吸气式火箭发动机 (SA-BRE)上所使用的预冷器采用的便是微通道结构, 2012年该预冷器进行了地面全尺寸预冷实验,预冷 器总管长为 50km,直径约 1mm,质量在 50kg以内,实 现了在 20ms内将来流空气的温度从 1000℃以上降 至-150℃^[2]。

平行平板式微通道是指横截面为矩形且其宽高 比较大的微通道,由于其易加工,且流体在其中的流

动形式相对简单,因此获得了广泛的关注与研究。 在理论层面,李俊明等[3]通过提出贴壁层理论求解了 不可压缩流体在平行平板式微通道内的完全发展的 层流流动,得到了边界条件为两表面均为均匀热流 下的流体温度分布和对流换热系数,结果表明当克 努森数(Kn)小于0.001时,层流换热的尺度效应可忽 略不计,而随着Kn数的增加,对流换热系数逐渐减 小;安刚等[4]在此基础上分析并求解了边界条件为一 壁面绝热、另一壁面等温的流动过程,得到了类似的 结论; Morini 等^[5-7]讨论了考虑粘性耗散的不可压缩 流体在微通道中的流动换热过程,其通过Stokes公式 将边界条件直接引入到控制方程中,降低了方程的 求解难度,其研究结果表明,布林克曼数(Br)、雷诺数 (Re)和通道横截面形状对粘性耗散在换热中的重要 程度具有较大影响,粘性耗散效应使得努塞尔数 (Nu)减小,并且通过数值计算拟合得到了 Nu 和 Br 间 的函数关系式。随着计算机技术的发展,许多研究 人员开始采用高精度数值模拟手段研究微通道内的 流动换热过程。顾娟等^[8]采用格子 Boltzmann 法数值 求解了不同热边界条件下的平行平板式微通道内的 流动过程,结果表明在流动与热的充分发展段,稀薄 效应使得摩擦系数减小,而气体的传热性能同时受

气体的稀薄性与热边界条件的影响;Cavazzuti^[9]综合 考虑了粘性耗散和压缩性效应对微通道中Nu的影 响,并通过大量的数值计算,拟合得到了层流区Nu与 Br,马赫数(Ma)的函数关系式。鉴于理论上解耦动 量与能量方程十分困难[10],以及需要评估数值模拟 方法的合理性与结果的有效性,因此至目前为止,开 展相关实验仍是研究微通道的主要途径。Shou-Shing Hsieh 等^[11]进行了以氮气为介质的层流矩形微 通道流阻实验,通道尺寸为0.2mm×0.05mm×24mm, Kn为0.001~0.02,结果表明与常规尺寸通道相比,微 通道内的流阻损失更小,而随着Re数的增加,两者的 差别逐渐缩小;Turner等^[12]以氮气为介质进行了平行 平板式微通道的流动换热实验,通道高度50µm,壁 面温度沿轴向呈线性分布,其通过数值拟合获得了 Nu为8.235下的气体温度恢复系数的经验公式;更多 关于微通道流动与换热的实验结果可参考文 献[13]。

当气体在微通道内进行流动换热时,受压力与 温度变化的影响,气体的密度会发生改变,这种变化 可能对流阻系数和对流换热系数带来一定的影响。 而以上的理论研究大多引进了常物性假设,或者只 是从数值计算的角度求解了个别微通道内的气体流 动换热过程,没有从理论上系统地说明气体密度在 流动方向上的变化会对微通道内的流动换热过程造 成何种影响。虽然这些研究和其他一些仿真结果^[14] 在一定程度上能对这一问题进行现象上的描述和定 性的说明,但这种说明仅限于某一特定的结构和流 动参数,并且没有定量地讨论气体密度与流阻系数、 对流换热系数之间的关系,因此其参考价值十分 有限。

本文将从理论上讨论微通道内处于连续介质区 下的气体层流流动与换热过程,并考虑气体密度变 化给结果带来的影响。本文将利用分离变量法将控 制方程从偏微分方程组简化为常微分方程组,以减 小计算量与计算复杂度,由此计算得到均匀热流密 度边界条件与低马赫数下平行平板式微通道内气体 的速度、温度和压力的分布情况,分析微通道内气体 流动与换热的特征及其与常规尺寸通道内的区别与 联系,为相关微通道换热设备的设计与流动换热过 程的进一步研究提供参考。

2 二维分析与求解

2.1 流动与换热模型

平行平板式微通道是指横截面为矩形且其宽高

比较大的通道,根据实验结果与计算结果间的对 比^[11-12],当宽高比大于4时,气体速度、压力等参数沿 宽度方向的变化便很小,若热边界条件沿通道宽度 方向不发生变化,则流体在通道内的流动与换热过 程便可忽略沿宽度方向的特征而简化为二维情况, 如图1所示。

Hsieh 等^[11]将层流流动下 Darcy 与 Fanning 摩擦 系数的理论值与实验值做了对比,Turner 等^[12]将采用 ALE 方法计算得到的微通道出口气体温度与实验值 进行了比较,他们的研究表明,当*Re* 数小于1700,*Ma* 小于 0.4时,将通道内的流动视作层流来处理是合适 的,相关计算结果与实验值吻合较好。因此这里采 用连续介质情况下的二维层流稳态流动的控制 方程。

连续方程

$$\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = 0 \tag{1}$$

动量方程

$$\rho\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x}\left(\mu\frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y}\left(\mu\frac{\partial u}{\partial y}\right) + \frac{\mu}{3}\left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} v}{\partial x\partial y}\right)^{(2)}$$

$$\rho\left(u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}\right) = -\frac{\partial p}{\partial y} + \frac{\partial}{\partial x}\left(\mu\frac{\partial v}{\partial x}\right) + \frac{\partial}{\partial y}\left(\mu\frac{\partial v}{\partial y}\right) + \frac{\mu}{3}\left(\frac{\partial^{2} v}{\partial y^{2}} + \frac{\partial^{2} u}{\partial x\partial y}\right)^{(3)}$$

根据 Hong 等^[15]的研究结果,粘性耗散与压力功 在能量方程中的作用大致相当,在低马赫数下同时 忽略粘性耗散与压力功的影响不会对结果产生显著 的影响,因而能量方程表示为

$$\rho u \frac{\partial i}{\partial x} + \rho v \frac{\partial i}{\partial y} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right)$$
(4)

在压力不太高与温度不太低的情况下,认为气

体符合理想气体状态方程,即

$$p = \rho R_{\rm m} T \tag{5}$$

关于边界条件,依据Turner等^[12]的结果,当Kn小于0.01时,壁面处气体的速度与温度均采用无滑移条件是合理的,因此有

$$u|_{y=\pm\Delta} = v|_{y=\pm\Delta} = 0 \tag{6}$$

$$T_{\rm s} = T_{\rm w} \tag{7}$$

上下壁面均为给定的均匀热流,即

$$\pm \left(\lambda \frac{\partial T}{\partial y}\right)_{y=\pm\Delta} = q_s \tag{8}$$

2.2 简化与求解

根据微通道的结构特征,做以下假设与简化:

①由于通道高度低,气体的粘性切应力很大,可 认为速度分量v = 0。

②忽略气体压力与密度沿 y方向的变化。

③任一截面处,气体均有相似的速度分布。

④气体的焓等于气体的定压比热与温度的乘积,气体的定压比热、动力粘度、导热系数沿y方向变化不大,即认为 $\frac{\partial \xi}{\partial y} \approx 0, \xi$ 代表 c_p, μ, λ 。

⑤存在热充分发展段,即 $\frac{\partial T}{\partial x} = \frac{\mathrm{d}T_{\mathrm{m}}}{\mathrm{d}x}$ 。

⑥与 y 方向的导热过程相比,气体沿 x 方向的导 热过程可忽略。

根据假设①与②,方程(3)可不考虑,方程(1)与 (2)分别简化为

$$\frac{\partial(\rho u)}{\partial x} = 0 \tag{9}$$

$$\rho u \frac{\partial u}{\partial x} = -\frac{\mathrm{d}p}{\mathrm{d}x} + \frac{4}{3} \frac{\partial}{\partial x} \left(\mu \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right)$$
(10)

根据假设③,可采用分离变量法对方程进行简化,将速度u写作

$$u = u_{\max}(x) \cdot \varphi(y) \tag{11}$$

这里 $\varphi(y)$ 代表速度分布函数,对于给定的微通 道结构与流动条件, $\varphi(y)$ 应当由实验确定。文献 [11-12]中的计算结果表明, $\varphi(y)$ 具有抛物型的特 征。考虑到这种变密度下的速度分布应当能够连续 过渡到不可压缩流体的速度分布,因此本文假定 $\varphi(y)$ 为常规尺寸通道下不可压流体的抛物型速度分 布,即

$$\varphi(y) = -\left(\frac{y}{\Delta}\right)^2 + 1 \tag{12}$$

对方程(9)进行积分,并根据假设②与式(11), 得到

$$u_{\max}(x)\rho(x) = \frac{f(y)}{\varphi(y)} = \theta$$
(13)

不难看出,这里θ为一确定常数,它由通道内的 流量确定

$$\dot{m} = \int_{0}^{\Delta} \rho u dy = \theta \int_{0}^{\Delta} \varphi(y) dy = \theta \cdot \frac{2}{3} \Delta \qquad (14)$$

至此已得到通道内任一截面处的速度分布,并可由 $u_{max}(x)$ 计算得到 $\rho(x)$,进一步可计算Fanning摩擦系数为

$$c_{\rm f} = \frac{\tau_{\rm s}}{\frac{1}{2}\rho U^2} = \frac{-\left(\mu \frac{\partial u}{\partial y}\right)_{y=\Delta}}{\frac{1}{2}\rho U^2} = \frac{24}{Re}$$
(15)

这与常规尺寸通道内不可压缩流体的理论计算 值相同。

根据假设①④⑤⑥,式(4)简化为

$$\rho u c_p \frac{\mathrm{d}T_{\mathrm{m}}}{\mathrm{d}x} = \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right)$$
(16)

将式(11)~(14)代入式(16)并沿 y方向进行积分,并根据假设④忽略定压比热和导热系数沿 y方向的变化,可得到气体的温度分布

$$T = T_{s} - \frac{3\Delta \dot{m}}{2} \frac{c_{p}}{\lambda} \frac{dT_{m}}{dx} \left(\frac{1}{12} \left(\frac{y}{\Delta}\right)^{4} - \frac{1}{2} \left(\frac{y}{\Delta}\right)^{2} + \frac{5}{12}\right)$$
(17)

横截面上的气体平均温度为

$$T_{\rm m} = \frac{\int_{0}^{p} \rho u T \mathrm{d}y}{\dot{m}} = T_{\rm s} - \frac{17}{35} \Delta \dot{m} \frac{c_{\rm p}}{\lambda} \frac{\mathrm{d}T_{\rm m}}{\mathrm{d}x} \qquad (18)$$

根据牛顿冷却定律,壁面热流密度为

$$q_{s} = h(T_{s} - T) = h \frac{17}{35} \Delta \dot{m} \frac{c_{p}}{\lambda} \frac{dT_{m}}{dx}$$
(19)

根据能量守恒原理,有

$$q_s = \dot{m}c_p \frac{\mathrm{d}T_{\mathrm{m}}}{\mathrm{d}x} \tag{20}$$

联立式(19),(20),可计算得到Nu

$$Nu = \frac{h \cdot 4\Delta}{\lambda} = \frac{140}{17} = 8.235$$
 (21)

这与常规尺寸通道内的不可压缩流体的理论计 算值相同。

将式(11)~(14)代入方程(10)并沿y方向进行积分,并根据假设④忽略动力粘度沿y沿方向的变化,可得到

$$\frac{8}{9}\mu \frac{\mathrm{d}^2 u_{\max}}{\mathrm{d}x^2} + \frac{4}{5}\frac{\dot{m}}{\Delta}\frac{\mathrm{d}u_{\max}}{\mathrm{d}x} + \frac{2\mu}{\Delta^2}u_{\max} + \frac{\mathrm{d}p}{\mathrm{d}x} = 0\,(\,22\,)$$

鉴于气体的动力粘度很小,而在低马赫数下气体的加速效应不会十分显著,因此式(22)中的二阶导数项可以忽略不计,进而简化为

$$\frac{4}{5}\frac{\dot{m}}{\Delta}\frac{\mathrm{d}u_{\max}}{\mathrm{d}x} + \frac{2\mu}{\Delta^2}u_{\max} + \frac{\mathrm{d}p}{\mathrm{d}x} = 0 \qquad (23)$$

综合假设②与方程(5),会得到气体的温度沿 y 方向的梯度为0的结果,这显然不符合实际情况,但 在一定的近似基础上,可对方程(5)做一定修改,将 其中的当地静温用截面平均温度替代,即

$$p = \rho R_m T_m$$
 (24)
结合假设②,这种修改可看作是对方程(5)的一
种平均化处理,虽然与实际情况有所出入,但由于通
道高度很小,在低马赫数下气体的各状态参数沿 y 方
向的绝对变化量不大,因此在一定精度范围内这种
近似是可接受的,之后的结果对比会进一步佐证这
一点。

联立式(13),(14),(20),(23),(24),可得到以 $u_{\text{max}},\rho,p,T_{\text{m}}$ 为待解变量的常微分控制方程组(25),假 定通道内气体流量和入口处的 $u_{\text{max}},p,T_{\text{m}}$ 值已知,则 可以通过数值求解得到上述参数沿流向的分布情 况,下文将采用四阶四级 Runge-Kutta 法对其进行 求解。

$$\begin{cases} u_{\max}(x)\rho(x) = \frac{3\dot{m}}{2\Delta} \\ \frac{4}{5}\frac{\dot{m}}{\Delta}\frac{\mathrm{d}u_{\max}}{\mathrm{d}x} + \frac{2\mu}{\Delta^2}u_{\max} + \frac{\mathrm{d}p}{\mathrm{d}x} = 0 \\ p = \rho R_{\mathrm{m}}T_{\mathrm{m}} \\ q_{\mathrm{s}} = \dot{m}c_{p}\frac{\mathrm{d}T_{\mathrm{m}}}{\mathrm{d}x} \end{cases}$$
(25)

在以上的简化与处理过程中,由于气体的温度 沿高度方向变化不大,且 c_p,μ,λ 在较宽温度范围内 变化也不大,因此忽略气体物性沿高度方向的变化 不会造成显著的偏差。而由于热交换与加速过程的 作用,气体物性沿流向的改变量可能较大,尤其是密 度,不能视作常数。之后的算例验算将证明这样处 理的合理性。

3 结果与讨论

3.1 方法验证

为验证以上简化模型的正确性,本文共计算了 两组二维算例,用作验证的微通道结构参数、气体种 类、进出口边界条件与文献[12]相同,文献[12]中采 用的是常壁面温度梯度的热边界条件,在本文中将 该边界条件折算为均匀热流来进行计算。微通道高 度为0.05mm,长度为25mm,具体条件设置如表1所 示,其中出口Kn远小于0.01,出口Ma小于0.4,入口 Re小于1600,符合模型的假设条件。

本文同时采用ANSYS平台下的Fluent软件对上述2个算例进行模拟计算,其采用有限体积法对式(1)~(8)进行离散求解,计算采用层流模型,使用基于压力求解的耦合算法,梯度项采用基于单元的最小二乘的插值格式,压力项采用二阶插值格式,密度、动量、能量项均采用二阶迎风格式,收敛残差要求:连续方程与动量方程的残差小于10⁻³,能量方程的残差小于10⁻³,能量方程的残差小于10⁻⁶。为验证计算结果与网格设置无关,分别使用3种不同网格针对Case1进行计算,网格信息如表2所示,由于壁面附近的流动参数变化最剧烈,因此选择壁面切应力与壁面温度作为比较对象,对比结果如图2所示,三种网格下壁面切应力和壁面温度的相对偏差不超过1%,表明网格数量与布置已满足计算要求,此后计算均在编号为Mesh2的网格下进行。

根据对称性,以上计算均只针对 y>0的区域进行,计算中所使用的气体粘度、导热系数的数据来自于文献[16]。为方便后文表述,以下所有 2D 模型均指 2.2 节中的式(25)。

3.2 速度分布

图 3 展示了微通道中速度分布的计算结果。图 3(a) 为通过 Fluent 计算得到的气体速度矢量图,可看出气 体速度矢量基本沿 x 方向,验证了假设①的合理性。 图 3(b)为由式(12)与由 Fluent 计算得到的不同轴向 位置处的无量纲速度 u/umax沿通道高度方向的分布情 况,以及文献[12]所计算的速度分布结果。由图可 见,式(12)与 Fluent,文献[12]的结果之间均具有较 好的一致性,表明式(12)在一定误差范围内能较好 地描述微通道内低马赫数流动的气体的速度分布情 况,进一步佐证了假设①~③的合理性。事实上通过 Fluent 对全流域的计算模拟,可以直接观察到在任一 截面上气体的密度沿高度方向上变化不大(相对偏 差不超过 3%),速度沿高度方向的分量很小(与轴向

Table 1Calculation condition

Case	Gas	Inlet pressure/ kPa	Inlet temperature/ K	Outlet pressure/ kPa	Heat flux/ (W/m ²)	Outlet average Ma	Outlet Kn	Inlet Re
1	N:	525	306.4	421	7800	0.1539	3.34×10 ⁻⁴	1102
2	Nitrogen	523	306.1	354	11000	0.2582	3.91×10 ⁻⁴	1571

Table 2 Grid information

Grid number	Mesh 1	Mesh 2	Mesh 3
Grid quantity	15×200	25×400	50×800

速度之比小于0.01),直接验证了假设①~③的合理 性。图4展示了2D模型与Fluent分别对于式(13)中 θ 的计算结果,由图可见,除去通道的入口段(在本文 的算例中这段长度不超过3mm),2D模型的计算值与 Fluent的模拟值基本一致,这进一步佐证了在低马赫 数下气体流速分布的相似特性;而在入口段,由于流 动还处于发展之中,尚未达到假设③所要求的状态, 因此在这段区域内 θ 值与式(14)偏离较大。值得注 意的是, Case 2中在靠近出口附近, Fluent所计算得到 的θ值与式(14)之间的偏差有随着与出口之间距离 的减小而扩大的趋势,而在Case1中没有观测到类似 的明显偏离趋势。这种现象与微通道内气体的 Ma 有关。Case 2的出口平均 Ma(0.258) 要大于 Case 1 (0.154),这意味着在出口附近 Case 2 中的压缩性效 应要强于Case 1,与2D模型所提出的假设偏离更大, 因此θ值在出口附近有偏离式(14)的趋势。但从计 算结果来看,当出口平均 Ma 小于 0.25 时,这种偏差 不大。

2D模型与Fluent计算得到的通道内各横截面上 气体最大速度沿轴向的分布情况如图5所示,这里为 了避免入口段对结果的影响,从x=5mm处开始计算。 由图可见,2D模型的计算结果与Fluent的计算结果 的吻合度较高,表明式(23)的简化在本文的限定条 件下是合理的。注意到Case 2下的横截面上最大速 度在靠近出口附近呈现明显的非线性变化特征, Case 1也有上述特征但不明显,这表明气体速度在通 道内呈非线性变化规律,*Ma*的增加会导致轴向速度 梯度的增大。

对微通道内影响气体加速过程的主要因素做进 一步分析。根据式(10),影响气体加速过程的主要 因素有当地气体速度、压力梯度和粘性应力。速度 对加速过程的影响已在之前说明;压力梯度的影响 根据式(13)与式(24)可归结于加热过程的影响,而 加热过程的影响将在后文做具体分析,这里先重点 分析粘性应力的影响。粘性应力具体分为粘性正应 力与粘性切应力,图5中2D模型的结果是根据忽略 粘性正应力的式(23)得到的,而其与未忽略粘性正 应力的Fluent的计算结果之间的一致性表明粘性正

Fig. 3 Results of velocity distributions

Fig. 4 Distributions of θ along the axial direction

Fig. 5 Distributions of u_{max} on the cross section

粘性切应力。图6是Case 1与Case 2中气体在无粘 条件下(即忽略所有粘性应力)与有粘条件下的最大 速度的计算值对比,结果显示,出口处两者最大速度 的相对偏差分别为16%和26%,最大速度增量的相 对偏差分别为68%和80%,表明相比加热过程,粘性 切应力在微通道内对气体的加速过程起主导作用。 这与常规通道内的情形不同,其原因主要来自于通 道高度的影响。

为分析粘性切应力与加热对加速过程的影响, 对式(23)做必要的化简可得到式(26),式(26)中左 端第3项表示的粘性切应力的作用,在气体流量与通 道高度成正比的情况下,可见粘性切应力对气体加 速过程的影响程度与通道高度的平方成反比,当通 道高度较大时,粘性切应力的影响可以忽略不计,而 仅需考虑加热过程对气体加速的影响;当通道高度 减小到临界值时,粘性切应力与加热过程有相当的 影响力,并且随着速度的继续增大,粘性切应力的影 响程度迅速上升,加热过程的影响力迅速下降,直至 粘性切应力成为影响气体加速过程的主导因素。

$$\left(\frac{4}{5} - \frac{3}{2}\frac{R_{\rm m}T_{\rm m}}{u_{\rm max}^2}\right)\frac{\mathrm{d}u_{\rm max}}{\mathrm{d}x} + \frac{3}{2}\frac{R}{u_{\rm max}}\frac{\mathrm{d}T_{\rm m}}{\mathrm{d}x} + \frac{2\mu}{\dot{m}\Delta}u_{\rm max} = 0 \ (26)$$

Fig. 6 Impact of viscosity on the velocity from 2D model

有相同影响力时的临界通道高度可通过粘性切应力 项与加热项的比值来确定,为此定义

$$\Delta_{c} = \frac{\frac{\mu}{4\dot{m}\Delta} u_{\max}}{\frac{R_{m}}{u_{\max}} \frac{dT_{m}}{dx}} = k \frac{L}{\Delta} \frac{1}{\frac{4\dot{m}\Delta}{\mu}} \frac{u_{\max}^{2}}{kR_{m}\delta T_{m}} = k \frac{L}{\Delta} \frac{Ma_{m}^{2}}{Re}$$
(27)

对于氮气,当粘性切应力项与加热项作用相当时, Δ_{e} = 0.1875,当 Δ_{e} > 0.1875时,粘性切应力的影响 大于加热过程的影响。由于气体的加速, Δ_{e} 在通道 内会逐渐增大,图7为Case1与Case2中的 Δ_{e} 分布情 况,其数值均大于0.1875,Case2中 Δ_{e} 的数值最高可 超过0.8,因此相比Case1,Case2中的粘性切应力的 加速作用更加显著。

3.3 压力分布

...

图 8 展示了微通道内气体压力的计算结果,由图 可见 2D 模型与 Fluent 的计算结果之间具有较好的一 致性,这表明关于气体压力不沿高度方向变化的假 定以及对于状态方程的近似在一定精度范围内是合 适的,并且通过直接的数值求解,也可以观察到在本 文所限定的条件下任一横截面上的气体压力沿高度 方向变化均很小。以上结果表明,在低 Ma下,加热 与加速过程不会造成气体压力沿高度方向显著的变 化,这也是气体在流动过程中可以保持相似的抛物型

速度分布的原因之一。注意到相比 Case 1, Case 2中 气体压力在出口附近的非线性变化特征更加显著, 进一步佐证了 Ma 会对流动过程产生一定影响。图9 展示了壁面切应力的计算结果,由图可见 2D 模型与 Fluent 的计算结果之间具有较好的一致性,验证了式 (15)在一定范围内的正确性。注意到壁面切应力沿 流动方向是逐渐增大的,并且呈现出非线性变化规 律,事实上通过式(11),(12)对壁面切应力的计算可 看出,壁面切应力与对应横截面上的最大速度成正 比,因此壁面切应力的变化规律与最大速度的变化 规律是相似的。同时由于低马赫数下的压降主要来 自于壁面处的摩擦(这一点会在后文详细说明),因

Fig. 8 Distributions of the pressure

此压力的非线性变化特征也主要是由于速度的非线 性变化所引起的。

在本文的算例中,气体的压力损失主要包括沿 程摩擦损失和加速损失两部分,通过对通道内的气 体进行受力分析,并忽略粘性正应力的作用,可得到 压力总损失与摩擦损失和加速损失之间的关系,即

$$\mathrm{d}p = -\frac{\tau_s}{\Lambda}\mathrm{d}x - \dot{m}\mathrm{d}U \tag{28}$$

式(28)右端第一项代表摩擦损失,右端第二项 代表加速损失,当气体进出口压力与热边界条件不 变时,摩擦损失与加速损失之比 $\frac{\tau_s}{m\Delta} \frac{1}{dU/dx}$ 就仅与通 道高度有关。根据式(12)和式(14),有 $\tau_{s} \propto \frac{1}{4}$, $\dot{m} \propto \Delta$,因此 $\frac{\tau_s}{\dot{m}\Lambda} \frac{1}{dU/dx} \propto \frac{1}{\Lambda^3}$,这表明摩擦损失占总 损失的比例大致与通道高度的三次方成反比,随着 通道高度的减小,摩擦损失在总损失中所占的比例 将迅速增大。通过积分式(28),可获得摩擦损失与 加速损失沿流动方向的分布情况,图10展示了本文2 个算例中气体压力总损失与摩擦损失沿流动方向的 分布。由图可见,在低Ma下,微通道内气体的摩擦 损失占据压力总损失的主要部分,当x在5~25mm范 围内时,Case 1,Case 2中摩擦损失占总损失的百分比 分别为97.85%和95.56%。这种摩擦损失远大于其 他损失的现象在文献[17]中也有提及,不同的是在 文献[17]中该现象出现在气-液两相流中,其原因主 要是气-液相间较大的相对速度所导致的界面处较 大的粘性摩擦;而在单相低速流动中,造成这种现象 的原因主要来自两个方面:首先,与常规尺寸通道相 比,微通道的特征尺度更小,相应的速度边界层厚度 更小,边界层中速度变化率更大,根据牛顿粘性定 律,壁面处的粘性切应力就更大,摩擦损失也相应增 加;其次,由于微通道的流通面积小,在其他流动参

Fig. 10 Comparison between total pressure drop and friction pressure drop

数不变的情况下,单个微通道内的气体流量要远小 于常规通道内的流量,而根据式(28),这就使得加速 损失减小。随着通道高度的减小,摩擦损失的增加 和加速损失的减小同时发生,便使得在微通道中摩 擦损失成为气体压力损失的主要来源。

3.4 温度分布

图 11 展示了气体温度分布的计算结果。其中图 11(a)为由 Fluent计算得到的气体温度分布云图,由 图可见,除了通道入口附近,通道其余大部分区域内 气体均处于热充分发展阶段,不同 y坐标处的气体温 度沿 x 方向的变化率基本相同,验证了假设⑤的合理

(a) Gas temperature contour for Case 1 from Fluent

Fig. 11 Results of gas temperature distributions along the height direction at different axial positions

性。图11(b),(c)为不同横截面上的气体温度的计 算结果,由图可见2D模型与Fluent的计算结果之间 具有较好的一致性,这表明关于热充分发展段的假 定是合适的。值得注意的是,Fluent在计算中考虑了 轴向导热,而2D模型略去了轴向导热的影响,图11 表明这种忽略不会在计算上引起显著的误差,也就 是说在微通道中,当Ma较小时,沿流动方向的导热 量相对于沿高度方向的导热量而言很小,可以略去 不计。图 12为 Case 1, Case 2中 Fluent 所计算的 Nu 沿通道的分布情况,除去通道进出口处受进出口效 应的影响,其余各处的Nu与2D模型所计算的理论值 基本一致,最大相对偏差不超过1.5%。由于Fluent 计算时所使用的物性参数均与温度有关,因此以上 结果表明,在气体Ma较小、粘性热可忽略的情况下, 加热过程中气体密度与导热系数随温度的变化对 Nu 的影响很小,可略去不计。

Fig. 12 Distribution of Nu along the axial direction

3.5 密度与通道尺度的影响

根据以上分析,气体密度对微通道中气体速度 与压力的变化具有重要影响。一方面,当气体密度 在流动过程中减小,流动速度便会增大,使得气体与 壁面之间的粘性摩擦增大,进而导致气体沿流动方 向的压力梯度增大,当压力的变化要远大于温度的 变化时,气体密度便会继续下降,由此形成正向反 馈,由于整个过程的非线性,便造成了如图5,图8中 所示的气体速度与压力由线性变化向非线性变化转 变的现象。另一方面,如3.2节所述,摩擦损失占据 微通道中气体压力损失的主要部分,且与常规通道 相比,微通道内的壁面切应力要更大,而密度的减小 将使流速增大,进而使得摩擦损失进一步增大,导致 与常规尺寸通道相比,在流量密度和通道长径比等 条件相同的情况下,微通道内气体的压力损失要更 大。若不考虑密度变化,则对微通道内气体压力损 失的估计会造成不可忽略的偏差。以本文中的算例 为例,采用通道 x=5mm 处的密度值计算该处至出口 的气体压力损失,计算方法源自文献[17],该计算值 与仿真值相比将会产生-16.5%(Case 1),-25.0% (Case 2)的偏差,因此,当计算微通道中气体压降时, 必须考虑密度的改变。

虽然气体密度对气体的速度和压力沿流动方向 的分布具有重要影响,但根据式(12),(15),(18), (21)以及Fluent的计算结果,密度的改变对于气体速 度、温度沿高度方向的分布以及气壁间的热量交换 并没有产生显著影响^[18]。Case 1和 Case 2中气体进 出口密度相对改变量分别为26.8%和36.8%,而出口 处无量纲速度和无量纲温度的 2D 模型计算值与 Fluent 仿真值之间的相对偏差均不超过 2.5%, 说明虽然 沿流动方向气体密度变化很大,但沿高度方向气体 速度与温度仍近似保持常密度流动下的分布,因此 摩擦系数与Nu在数值上近似等于常密度下的理论 值。整个微通道内的流动换热过程类似于一种"准 静态"过程,在任一横截面处,气体的速度、温度以及 压力沿高度方向的分布与密度取该处实际密度值的 常物性流动换热过程中的速度、温度、压力分布相 同,密度沿流动方向发生变化,而速度、温度、压力等 参数依照上述关系随之而变化,因此只要确定了密

度沿流动方向的分布情况,就可以确定其他各参数 在通道内的分布情况。造成以上这种现象的原因, 主要是气体密度沿通道高度方向上变化不大,使得 可以将任一横截面处的密度视作与y坐标无关的常 量,也就是满足假设②,由此根据连续方程可导出与 不可压缩流体相同的速度分布,继而得到相同的温 度分布,并且与实际情况相比不会产生显著的偏差。

然而即便是在低 Ma下,假设②也不是能够轻易 满足的,但对于微通道来讲,由于通道高度很小,在 速度不高和热流量不大的情况下,气体的压力、温 度、密度等状态参数沿高度方向变化都很小,因此假 设②是合理的。换句话说,这种变物性的流动与换 热过程与常物性的流动与换热过程的相似性是由微 通道的尺度特性造成的,在相同边界条件下,通道高 度越小,相似性越高。而对于常规通道来讲,在相同 条件下就没有这种相似特性。图13展示了通道高度 为5mm,通道长度2.5m的常规平行平板式通道在出 口流速和单位质量气体的吸热量与 Case 2 中的条件 大致相当的前提下的流动换热过程计算结果,流动 介质为氮气。从图中看出,常规尺寸通道出口处的 气体速度、温度以及Nu数分布均与微通道中的分布 有明显不同,亦表明当用式(12),(17),(21)等式来 计算常规通道内的参数分布时会产生显著偏差,甚

Fig. 13 Comparison between microchannel and microchannel

至当用式(17)来计算该算例下常规通道内的温度分 布时会产生温度值小于0的错误。而出现这种结果 的原因是不能忽略常规通道横截面上气体密度沿高 度方向的变化,如图13(c)所示,常规通道中气体密 度沿高度方向上的变化量超过50%,显著偏离假设 ②,而相同情况下微通道中的密度变化量小于2%。 通道高度是导致出现这种情况的主要因素,其原因 在于当气体压力沿高度方向变化不大时,气体密度 主要受温度的影响,当壁面热流密度给定,根据Fourier定律,沿高度方向的温度变化率就确定了,当热 流密度很大时,温度变化率也会很大。对于常规尺 寸通道,其通道高度很大,因此气体的温度值沿高度 方向的变化量(平均温度变化率×通道高度)就很大 (如图 13(b)所示,温度变化量超过 50%),于是气体 密度沿高度方向也会有很大的变化,使得常规尺寸 通道内的气体参数分布与微通道内的参数分布存在 明显不同,同时也偏离2D模型的理论计算。而对于 微通道来讲,虽然沿高度方向的温度变化率很大,但 由于通道高度很小,总的温度变化量不大,相应的密 度变化量也就不大,因此2D模型可较好地预测气体 参数沿通道的分布。从另一个角度来看,常规尺寸 通道下靠近通道中心的气体温度要远低于靠近壁面 的气体温度,说明靠近中心的气体没有被有效地利 用去冷却壁面,而靠近壁面的气体反而被过度加热, 这种能量分布不均所导致的结果,就是在单位质量 气体的吸热量相同的情况下,常规尺寸通道的壁面 温度要远高于微通道的壁面温度,也就是说在相同 条件下微通道的换热能力要高于常规尺寸通道。需 要注意,不能以图13(d)中Nu的相对大小关系来直 接比较微通道和常规尺寸通道的换热能力,因为常 规尺寸通道的特征长度要远大于微通道。

4 结 论

采用分离变量法导出并简化了均匀热流条件下 平行平板式微通道内气体层流流动与换热过程的控 制方程,在连续介质、低马赫数以及可忽略粘性热的 情形下,求解并计算得到了当气体物性不再保持常 数时的气体速度、压力与温度的分布规律,研究和讨 论了气体密度和通道尺度对气体流动换热过程的影 响,获得了如下主要结论:

(1)基于文中构建的2D模型所求解得到的气体 二维流动换热结果与对原控制方程进行直接数值求 解的结果在一定误差范围内具有良好的一致性。

(2)气体流动马赫数小于 0.3 时,存在流动与热

充分发展段,在充分发展段,气体的压力、密度沿高 度方向变化不大,气体参数沿轴向呈"准静态"发展 特征,各横截面上的气体速度、温度分布,以及 Fanning摩擦系数和 Nu 与密度取为该截面处密度值的常 物性流体流动与换热过程的理论计算结果基本一 致,在本文算例下,上述两种情况下的主要参数的最 大偏差不超过 2.5%。通道的尺寸效应是造成这种现 象的主要原因,通道高度越小,该效应越显著。

(3)气体流动马赫数小于0.3时,微通道中气体 密度沿气体流向的变化不会对气体与壁面之间的换 热强度和气体速度沿通道高度方向的分布造成显著 影响,但会使得气壁间的粘性摩擦力沿气体流向发 生变化,当气体被加热时,气壁间的粘性摩擦力沿气 体流向非线性增大。

(4)相比粘性切应力,粘性正应力对速度的影响 可以忽略,气体的加速过程主要受粘性切应力与轴 向温度梯度的影响,其相对重要程度可由Δ。判断,当 通道高度小于一定值时,粘性切应力将起主导作用。

(5)气体的速度与压力沿轴向呈非线性变化,其 轴向梯度的大小与流动马赫数有关,马赫数越大,速 度与压力梯度越大;壁面切应力与对应横截面上的 最大速度成正比,沿轴向呈非线性增长趋势。

(6)摩擦损失占气体在微通道内流动总损失的 主要部分,本文算例下其比例超过95%,该比例大致 与通道高度的三次方成反比。

(7)相比常规尺寸通道,微通道对气体的有效利 用程度更高,换热能力更强。

以上结论只在连续介质、低马赫数以及可忽略 粘性热的条件下才成立,并不是在任意的微通道结 构与边界条件下均能满足上述条件,以上条件是否 成立、何时成立仍有待研究,本文的相关方法与结论 可以为进一步的研究提供必要支持。

参考文献

- [1] Tuckerman D B, Pease R. High-Performance Heat Sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2 (5): 126-129.
- [2] 邓 帆,谭慧俊,董 吴,等.预冷组合动力高超声速空天飞机关键技术研究进展[J].推进技术,2018, 39(1):1-13(DENG Fan, TAN Hui-jun, DONG Hao, et al. Progress on Key Technologies of Hypersonic Aerospace Plane with Pre-Cooled Combined Propulsion [J]. Journal of Propulsion Technology, 2018, 39(1):1-13.)
- [3] 李俊明, 王补宣, 彭晓峰. 气体在平行平板间微槽内的二维层流换热[J]. 工程热物理学报, 1999, 20(2):

194-198

- [4] 安 刚,李俊明,王补宣. 气体在单壁面等温平行平 板微槽道内完全发展层流换热[J]. 大连理工大学学 报,2001,41(S1):34-37.
- [5] Morini G L, Spiga M. Nusselt Numbers in Rectangular Ducts with Laminar Viscous Dissipation [J]. Journal of Heat Transfer, 1999, 121(4): 1083-1087.
- [6] Morini G L. Viscous Heating in Liquid Flows in Micro-Channels [J]. International Journal of Heat and Mass Transfer, 2005, 48(17): 3637-3647.
- [7] Morini G L, Marco Spiga. The Role of the Viscous Dissipation in Heated Microchannels [J]. Journal of Heat Transfer-Transactions of the ASME, 2007, 129(3): 308-318.
- [8] 顾 娟,黄 荣,刘振宇,等.不同热边界条件下微 通道内气体的流动与传热性能[J].上海交通大学学 报,2018,52(9):1038-1043.
- [9] Marco Cavazzuti. Viscous Heating Effects on Heat Transfer Characteristics of Laminar Compressible Channel Flow
 [J]. International Journal of Heat and Mass Transfer, 2020, 153(11).
- [10] Robert K Prud' homme, Thomas W Chapman, Bowen J Ray. Laminar Compressible Flow in a Tube[J]. Applied Scientific Research, 1986, 43(1): 67-74.
- [11] Shou-Shing Hsieh, Huang-Hsiu Tsai, Chih-Yi Lin, et al. Gas Flow in a Long Microchannel [J]. International Journal of Heat and Mass Transfer, 2004, 47(17-18): 3877-3887.

- [12] Stephen E Turner, Yutaka Asako, Mohammad Faghri. Convection Heat Transfer in Microchannels with High Speed Gas Flow[J]. Journal of Heat Transfer, 2007, 129 (3): 319-328.
- [13] Gian Luca Morini. Single-Phase Convective Heat Transfer in Microchannels: A Review of Experiments Results
 [J]. International Journal of Thermal Sciences, 2004, 43 (7): 631-651.
- [14] Daniel W Gould, Marcus P Young, Brad W Hoff, et al. Numerical Analysis of a Single Microchannel Within a High Temperature Hydrogen Heat Exchanger for Beamed Energy Propulsion Applications [C]. Minneapolis: Proceedings of the ASME 2013 Summer Heat Transfer Conference, 2013.
- [15] Chungpyo Hong, Yutaka Asako. Heat Transfer Characteristics of Gaseous Flows in a Microchannel and a Microtube with Constant Wall Temperature [J]. Numerical Heat Transfer, Part A, Applications, 2007, 52(3): 219-238.
- [16] 马沛生,夏淑倩,夏 清.化工物性数据简明手册[M].北京:化学工业出版社,2013.
- [17] Ji Wang, Jin Wang, Junming Li, et al. Pressure Drop of R134a and R1234ze (E) Flow Boiling in Microchannel Arrays with Single- and Double-Side Heating[J]. International Journal of Heat and Mass Transfer, 2020, 161.
- [18] 史美中,王中铮.热交换器原理与设计[M].南京:东 南大学出版社,2009.

(编辑:梅 瑛)