大推力氢氧发动机瞬态特性研究*

郑大勇^{1,2},王弘亚²,胡 骏¹

(1. 南京航空航天大学 能源与动力学院,江苏南京 210016;2. 北京航天动力研究所,北京 100076)

摘 要:以大推力氢氧火箭发动机为研究对象,对其瞬态特性进行了研究。根据模块化的建模和仿 真思想,建立了发动机各组件的动态数学模型,开发了发动机系统各组件的仿真模块,开展了发动机动 态特性仿真分析与起动时序试验研究。仿真结果表明:推力室氧阀采用25%初级与100%全开的双开度 形式,氧涡轮侧设置10%分流流量的燃气分流阀,燃气发生器在火药启动器工作至70%~80%时间段点 火的系统优化配置方案,有利于控制发动机点火起动混合比,提高起动可靠性。通过添加故障因子,当 涡轮效率由于故障从0.29降至0.19时,发动机工况降至故障前的78%工况,当效率降至0.06时,发动机 工况降至故障前20%工况,发动机故障仿真结果与地面试验故障结果吻合较好,有利于故障分析定位。

关键词:瞬态特性;氢氧火箭发动机;起动特性;模块化建模;仿真分析

中图分类号: V434.11 文献标识码: A 文章编号: 1001-4055 (2021) 08-1761-09 **DOI**: 10.13675/j.enki. tjjs. 190842

Transient Characteristics of High-Thrust Oxygen/ Hydrogen Rocket Engine

ZHENG Da-yong^{1,2}, WANG Hong-ya², HU Jun¹

(1. College of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;2. Beijing Aerospace Propulsion Institute, Beijing 100076, China)

Abstract: Using the high-thrust oxygen/hydrogen rocket engine as an example, the engine transient characteristics were studied. Based on the methodologies of modular modeling and simulation, dynamic mathematical models of the engine parts were established; simulation modules of each componets of the engine system were developed; simulation analysis of the engine dynamic characteristics and test studies of start-up series were carried out. Simulation results showed that, an optimized system configuration with a gas valve set on side of the oxygen turbo to diverge 10% gas flow, the main oxidizer valve equipped with 25% first-stage position and 100% second-stage position, and a gas generator ignited when solid propellant starter operating to its 70%~80% working time, were to the benefit of the control of engine ignition mixture ratio and alse enhanced the start-up reliability. By adding a fault factor, the operational condition of the engine was decreased from 78% to 20%, while the oxidizer turbine efficiency reduced from 0.29 to 0.19, and the results of engine failure simulation agreed well with the ground-test data. Hence, the correctness of the model was verified, which was helpful for the analysis and location of failure.

Key words: Transient characteristics; Oxygen/hydrogen rocket engine; Start-up characteristic; Methodology of modularization modeling; Simulation analysis

^{*} 收稿日期: 2019-12-10;修订日期: 2020-03-05。

通讯作者:郑大勇,博士生,研究领域为液体火箭发动机总体技术。E-mail: zhengxiaoyong2001@163.com

引用格式:郑大勇,王弘亚,胡 骏.大推力氢氧发动机瞬态特性研究[J].推进技术,2021,42(8):1761-1769. (ZHENG Da-yong, WANG Hong-ya, HU Jun. Transient Characteristics of High-Thrust Oxygen/Hydrogen Rocket Engine [J]. *Journal of Propulsion Technology*, 2021, 42(8):1761-1769.)

1 引 言

采用液氧和液氢作为推进剂的火箭发动机(简称氢氧发动机),是目前化学推进剂火箭发动机中性能最高的,具有高能和环保的特点,可显著提高运载火箭的有效载荷能力^[1-2]。

氢氧发动机工作时存在低温推进剂流动、传热、 相变、燃烧等复杂的物理化学过程,各组件之间存在 强烈的耦合和非线性特征,如何确保发动机快速、平 稳、可靠的达到设定工况,并保证整个系统具有足够 的稳定裕度是发动机动态过程控制的重点和难点。 国外氢氧发动机研制过程中,为制定正确合理的发 动机工作程序进行了大量的理论和试验研究,并根 据仿真结果制定了试车程序,保证了发动机工作的 安全性和可靠性^[3-7]。

我国新一代运载火箭首次采用大推力氢氧发动 机作为芯级主动力装置^[8]。该发动机是目前我国推 力最大、综合性能水平较高的氢氧发动机。与小推 力氢氧发动机相比,大推力氢氧发动机推力大、参数 高、组件负荷大。在发动机过渡过程中,发动机动态 过程复杂,系统参数变化迅速,组件承受工况恶劣, 是发动机工作过程中的故障多发时段。如果发动机 起动控制时序不当,容易出现压力峰、温度峰、泵失 速、组件烧蚀等问题,甚至飞行任务失败,影响火箭 飞行可靠性^[9-10]。因此,利用仿真技术的预示功能, 开展发动机瞬态特性研究具有重大现实意义。

本文以大推力氢氧发动机为研究对象,结合理 论研究、仿真分析和试验研究,开展发动机动态特性 仿真分析,研究发动机起动、关机与转级过程中的动 态特性,探寻合理、可靠的发动机瞬态过程控制策 略,指导发动机工程研制。

2 发动机数学模型及仿真建模

2.1 发动机主要组件数学模型

2.1.1 流体管路

液氢以及液氧管路均为弱可压流,不考虑能量 方程的耦合。管路动力学特性的控制方程、安装形 式、管壁杨氏模量以及推进剂含气率等因素的影响 折算到推进剂声速中^[11-13]。

$$p_{\rm ni} - p_{\rm ne} = L \frac{{\rm d}\dot{m}}{{\rm d}t} + R\dot{m}^2 \tag{1}$$

$$C \cdot \frac{\mathrm{d}p}{\mathrm{d}t} = \dot{m}_{i} - \dot{m}_{e}, C = \frac{V}{a^{2}}$$
(2)

式中pni为计算单元入口压力;pne为计算单元出

口压力;L为计算单元惯性;mi为计算单元入口质量 流量;mi,为计算单元出口质量流量;R为计算单元流 阻;C为计算单元流容;V为计算单元体积;a为介质 声速。

2.1.2 涡轮泵

发动机上的两个涡轮泵并联分布,采用额定工 况点附近水试数据拟合得到泵的扬程、效率经验公 式^[14-16]。其具体表达形式为

$$H = \left(\alpha_1 \cdot Q_v^2 + \alpha_2 \cdot Q_v \cdot n + \alpha_3 \cdot n^2\right) \cdot \bar{\rho} \qquad (3)$$

$$\boldsymbol{\eta}_{\mathrm{p}} = \boldsymbol{\beta}_{1} \cdot \left(\frac{Q_{\mathrm{v}}}{n}\right)^{2} + \boldsymbol{\beta}_{2} \cdot \left(\frac{Q_{\mathrm{v}}}{n}\right) + \boldsymbol{\beta}_{3} \tag{4}$$

式中H为泵扬程; $\alpha_1, \alpha_2, \alpha_3$ 为泵扬程拟合系数; Q_v 为过泵体积流量;n为泵转速; $\bar{\rho}$ 为过泵介质平均密 度; η_p 为泵效率; $\beta_1, \beta_2, \beta_3$ 为泵效率拟合系数。

涡轮的效率采用经验公式计算

$$\eta_{1} = \xi_{1} \cdot \left(\frac{u}{v'}\right)^{3} + \xi_{2} \cdot \left(\frac{u}{v'}\right)^{2} + \xi_{3} \cdot \left(\frac{u}{v'}\right) + \xi_{4} \quad (5)$$

式中 η_1 为涡轮效率; ξ_1 , ξ_2 , ξ_3 , ξ_4 为涡轮效率拟合 系数;u为涡轮叶片圆周速度;v'为涡轮叶片出口理论 等熵排气速度。

涡轮泵转子系统的扭矩公式为

$$J \cdot \frac{\mathrm{d}n}{\mathrm{d}t} = M_{\mathrm{t}} - M_{\mathrm{p}} \tag{6}$$

式中*J*为涡轮泵转动惯量;*M*,为涡轮端扭矩;*M*,为泵端扭矩。

$$M_{i} = \frac{\eta_{i} \dot{m}_{i} P}{2\pi n}, M_{p} = \frac{\Delta p \dot{m}_{p}}{2\pi n \bar{\rho} \eta_{p}}$$
(7)

$$P = \frac{k_{\rm g}}{k_{\rm g} - 1} R_{\rm g} T_{\rm g} \left[1 - \frac{1}{\pi_{\star}^{(k_{\rm g} - 1)/k_{\rm g}}} \right]$$
(8)

式中 \dot{m}_{i} 为涡轮燃气流量;P为涡轮燃气可用等熵 膨胀功; \dot{m}_{p} 为过泵质量流量; k_{g} 为涡轮燃气绝热指 数; R_{g} 为涡轮燃气气体常数; T_{g} 为涡轮入口燃气温度; π_{i} 为涡轮压比。

2.1.3 喷注器

发动机燃气发生器采用为液氢-液氧喷注器,其 喷注单元的计算模型为

$$\dot{m} = \mu A \sqrt{2\rho_1 \Delta p_1} \tag{9}$$

式中m为喷注器质量流量; μ 为喷注器流量系数;A为当量喷注面积; ρ_1 为喷注器前推进剂密度; Δp_j 为喷注压降。

推力室喷注单元为气氢-液氧喷嘴,液氧喷注单 元计算模型与燃气发生器相同,气氢喷注单元计算 模型为 式中k为喷注器前绝热指数; p_{ji} 为喷注器前压力, p_{je} 为喷注器出口压力; ρ_{g} 为喷注器前气体密度。 2.1.4 燃烧室

燃烧组件采用集中参数模型,不考虑燃烧时滞, 按下面方程组进行求解

$$\frac{\mathrm{d}p_{\mathrm{c}}}{\mathrm{d}t} = \frac{k_{\mathrm{c}}}{V_{\mathrm{c}}} \left[(RT)_{\mathrm{i}} \cdot \dot{m}_{\mathrm{i}} - (RT)_{\mathrm{c}} \cdot \dot{m}_{\mathrm{c}} \right] \qquad (11)$$

$$\frac{\mathrm{d}K_{\mathrm{m}}}{\mathrm{d}t} = \frac{1}{\rho_{\mathrm{e}} \cdot V_{\mathrm{e}}} \left[(K_{\mathrm{m}} + 1) \cdot (\dot{m}_{\mathrm{o}} - K_{\mathrm{m}} \cdot \dot{m}_{\mathrm{i}}) \right] \quad (12)$$

$$\frac{\mathrm{d}(RT)_{\mathrm{e}}}{\mathrm{d}t} = \frac{(RT)_{\mathrm{e}}}{p_{\mathrm{e}} \cdot V_{\mathrm{e}}} \left[(K_{\mathrm{m}} \cdot (RT)_{\mathrm{i}} - (RT)_{\mathrm{e}}) \cdot \\ \dot{m}_{\mathrm{i}} - (k_{\mathrm{e}} - 1) \cdot (RT)_{\mathrm{e}} \cdot \dot{m}_{\mathrm{e}} \right]$$
(13)

燃烧室在喉部达到声速,出口边界条件为

$$\dot{m}_{\rm c} = \Gamma(k_{\rm c}) \frac{p_{\rm c}}{\sqrt{(RT)_{\rm c}}} A_{\rm r}$$
(14)

 $\Gamma(k_{\rm e}) =$

$$\begin{cases} \sqrt{k_{c}\left(\frac{2}{k_{c}+1}\right)^{\frac{k_{c}+1}{k_{c}-1}}}, & \frac{p_{a}}{p_{c}} \leq \left(\frac{2}{k_{c}+1}\right)^{\frac{k_{c}}{k_{c}-1}} \\ \sqrt{\frac{2k_{c}}{k_{c}-1}} \left[\left(\frac{p_{a}}{p_{c}}\right)^{\frac{2}{k_{c}}} - \left(\frac{p_{a}}{p_{c}}\right)^{\frac{k_{c}+1}{k_{c}}}\right], \frac{p_{a}}{p_{c}} > \left(\frac{2}{k_{c}+1}\right)^{\frac{k_{c}}{k_{c}-1}} \end{cases} (15)$$

式(11)~(14)中, p_e 为燃烧室压力; V_e 为燃烧室 等效容积; k_e 为燃气绝热指数;(RT)_i为燃烧室入口 推进剂做功能力;(RT)_e为燃烧室燃烧产物做功能 力; \dot{m}_i 为燃烧室推进剂流量; \dot{m}_e 为燃气流量; \dot{m}_f 为氢 质量流量, \dot{m}_e 为氧质量流量; K_m 为燃烧室混合比; ρ_e 为燃烧产物密度; p_a 为喷管出口环境压力; A_i 为喉部 面积。

2.1.5 其它组件

用于发动机瞬态起动过程仿真的其它组件还包 括阀门、汽蚀管、节流圈、喷管等,限于篇幅不再 详述^[17-18]。

2.2 发动机模块化建模方法

大推力氢氧发动机主要由燃烧装置、涡轮泵、火 工品、各种阀门、节流元件、总装元件等组件组成。 与发动机动态特性相关的组件主要包括推力室、燃 气发生器、氢涡轮泵、氧涡轮泵、火药启动器、阀门以 及相关管路和容腔。

本文利用 AMESim 仿真软件平台,将发动机划分 为包括液体管道模块、离心泵模块、涡轮模块、火药 启动器模块、燃烧室容腔充填模块、喷注器模块、冷 却夹套模块、燃烧室模块以及喷管模块等18个独立 组件功能模块,分别编写了各个模块的数学模型,搭 建了模块化、通用化的发动机组件动力学模型库,并 搭建了大推力氢氧体发动机全系统动态仿真模型。 图1为发动机系统仿真模型。

Fig. 1 Transient simulation model of oxygen/hydrogen rocket engine

3 仿真分析与试验研究

3.1 发动机系统方案

大推力氢氧发动机采用燃气发生器循环方案, 图2为发动机系统简图,其系统构成的基本特点是:

(1)发动机由一台燃气发生器产生燃气并联驱动氢涡轮和氧涡轮,涡轮为大落压比的冲击式涡轮, 两涡轮有各自的排气管。

(2)发动机采用火药启动器作为涡轮泵的起动 能源,辅助发动机进入初级工况。

(3)推力室的燃烧室及短喷管采用全部液氢再 生冷却,喷管延伸段采用排放冷却。

(4)发动机采用循环预冷方案,起动前预冷发动机的低温推进剂要求返回贮箱,起动过程中不允许有大流量推进剂排入外场。

我国以往小推力氢氧发动机采取的是"带流量 憋压起动"方案。这种起动方案的特点是起动前不 提前预冷推力室,涡轮泵由外能源驱动起旋后再点 燃发生器与推力室,适用于高空起动、并允许向空中 排放推进剂的上面级发动机。而对于地面起动、特 别是采用循环预冷方式的大推力氢氧发动机来说, 起动时不允许有高压、大流量推进剂排向贮箱或外 场,同时推力室热阻较大,憋压起动时氢涡轮泵在气 阻状态下可能出现小流量失速的问题,因此需对推 力室进行预冷后再点火起动。

大推力氢氧发动机起动过程为:(1)推力室冷却 夹套预冷,减小起动过程中气阻。(2)在推力室夹套 预冷到一定程度后,推力室在贮箱压力下,小流量状 态下点火。(3)火药启动器工作,高温燃气分别驱动 氢涡轮泵和氧涡轮泵起旋,泵后压力爬升,发动机进 入初级工况。(4)燃气发生器点火工作,所产生的富 氢燃气代替火药燃气,继续将发动机加速至额定工 况并稳定工作。

Fig. 2 High-thrust oxygen/hydrogen rocket engine system schematic

3.2 仿真计算结果分析

3.2.1 起动仿真结果

根据设定的起动方案,在仿真程序中设置各阀 门动作时序,对发动机起动过程进行仿真计算,可以 得到发动机瞬态动力学过程。图3为大推力氢氧发 动机起动过程曲线。从图中可以看出,发动机采用 推力室箱压下提前预冷并点火,之后火药启动器起 动,燃气发生器与之火药启动器衔接的起动方式,发 动机能够顺利点火起动。

初步仿真结果表明发动机能够正常起动,但在 涡轮泵加速性与匹配控制方面还有进一步优化的 空间。

3.2.2 推力室氧阀开度对起动的影响

由于氢涡轮泵、氧涡轮泵的起动加速性不同,推 力室氧阀拟采用初级开度和全开开度的双开度方 案,以控制起动过程中的推力室混合比。图4为推 力室氧阀在三种不同初级开度下的氧泵压力与流 量曲线。从图中可以看出,35%初级开度下,氧泵 后负水击较大,氧头腔充填时间短,充填完毕后大 流量的液氧流入推力室,推力室点火混合比偏高,

Fig. 3 Transient characteristics of engine during start-up

达到约4.5 左右,推力室热防护难度很大。15%初 级开度下,氧泵流量偏小,泵后负水击较小,但推力 室点火混合比偏低,仅为1.5 左右,推力室燃烧组织 较为困难。25%初级开度下,推力室点火混合比控 制在2.5 左右,火药启动器起旋氧涡轮泵后,氧泵流 量在30%~40% 左右,远离小流量失速区,推力室、氢 涡轮泵及氧涡轮泵均处于安全工作范围内,相对 合理。

3.2.3 燃气分流阀对起动的影响

由于液氢与液氧两种推进剂密度差别很大,氢 涡轮泵与氧涡轮泵结构尺寸差别很大。氢涡轮转动 惯量大,加速慢,氧涡轮转动惯量小,加速快,两者工 况爬升速率差别较大,对发动机混合比影响很大。 为控制发动机起动过程中的混合比,在氧涡轮入口 燃气路的主通道上并联了一路起动燃气路,设置燃 气分流阀,控制起动过程中氢涡轮、氧涡轮之间的 燃气分配比例,合理分配氢涡轮泵与氧涡轮泵能量 比。在涡轮泵起旋过程中燃气分流阀处于关闭状 态,减小流过氧涡轮的燃气流量,让更多的燃气分 流到氢涡轮,防止起动过程中由于氧涡轮工况爬升 过快导致的混合比偏高。图5为燃气分流阀在 5%,10%和15%三种不同氧涡轮主通道当量流通

(b) Oxygen pump flowrate

Fig. 4 Variation of oxygen pump characteristics with oxidizer valve actuator positions

Fig. 5 Variation of gas temperature with gas distributary percentage

面积下的燃气发生器温度曲线。结果表明,5%分流 比例下,燃气分流比小,起动初期氧涡轮的工质流量 大,发生器混合比偏高;15%分流比例下,燃气分流比 大,氧涡轮的工质流量偏小,发生器混合比偏低。5% 分流比与15%分流比两者发生器燃气温度相差约 200K。10%分流比例下,发生器温度可控,处于合理 范围。

3.2.4 启动器与发生器衔接时间对起动的影响

火药启动器工作时间有限,在其工作结束之前, 需要发生器点火接力,代替火药启动器为涡轮泵提 供做功工质,保证发动机继续爬升至主级工况。图6 给出了燃气发生器分别在火药启动器工作56%, 78%,95%时间段下点火的推力室室压与发生器室压 仿真起动曲线。仿真结果表明,三种不同衔接时间 段下,发生器均能成功点火起动。两者衔接时间越长,发动机工况爬升越快,达到主级的起动时间越短。在火药启动器工作56%时间段下发生器点火,发动机工况爬升速率较快,但在火药启动器工作完毕后,发动机参数小幅回调,出现明显"超调"现象。 在火药启动器工作95%时间段下发生器点火,火药 启动器和发生器共同工作时间很短,发动机工况爬 升速率相对较缓,起动时间较长。在火药启动器工 作78%时间段下发生器点火,发动机工况爬升速率 较快,"超调"现象不明显,相对合理。

Fig. 6 Variation of engine pressure with pyrotechnic starter initiate

本节对大推力氢氧发动机起动方案与系统配置 进行了仿真分析,起动仿真计算直观展示了发动机 推力室点火、火药启动器工作以及燃气发生器衔接 工作过程中的主要性能参数变化趋势。获得以下 结论:

(1)发动机采用推力室贮箱压力下预冷点火,火 药启动器与燃气发生器衔接的起动方式能够实现发 动机顺利点火起动。

(2) 推力室氧阀采用 25% 初级开度和 100% 全开 开度的双开度形式, 氧涡轮燃气路设置 10% 燃气分 流阀的系统优化配置方案可有效控制发动机点火起 动混合比,确保发动机起动可靠性。

(3)火药启动器与燃气发生器共同工作衔接影 响发动机加速性,燃气发生器在火药启动器工作至 70%~80%时间段点火发动机工况加速性良好,起动相对平稳。

3.3 起动时序试验研究

大推力氢氧发动机推力大、瞬态过程复杂、组件 状态变化迅速,发动机的实际起动时序应结合仿真 分析及真实组件冷/热调试决定。在仿真分析的基础 上,还需要开展发生器与涡轮泵联合点火试验、发生 器与火药启动器联合点火试验、推力室点火试验以 及发动机点火试验等一系列关键时序研究试验,以 最终确定发动机起动控制时序。

3.3.1 发生器与涡轮泵联合试验

发生器与涡轮泵联合试验的目的是获得涡轮泵 的起动特性和性能参数。根据仿真分析确定的点火 试验时序为:0s火药启动器点火(火药启动器累计工 作时间1.1s),0.9s氧进入发生器,1.05s氢进入发生 器,发生器点火,与火药启动器衔接。

图 7 为发生器与氢涡轮泵、发生器与氧涡轮泵联 合试验压力曲线。试验结果表明,火药启动器单独 工作阶段,在 0.4~0.5s内涡轮泵即达到稳定工况,氢 泵后压力与氧泵后压力分别为 4.0MPa 和 2.5MPa,涡 轮泵加速性良好。由于火药启动器工作时间 4 s, 在发生器点火时刻,火药启动器工作时间基本结束, 发生器室压与泵后压力略有下降,当发生器点火工 作后,泵后压力重新快速爬升。由于仿真计算与实 际产品的差别,启动器与发生器工作衔接时间 偏短。

(b) Oxygen turbopump Fig. 7 Experimental results of engine powerpack test

3.3.2 发生器与火药启动器联合点火试验

发生器与火药启动器联合点火试验的目的是研 究火药起动器与燃气发生器的衔接特性,确定燃气 发生器点火特性与时序。

根据仿真分析,以及发生器与涡轮泵联合试验 结果对仿真模型和点火试验时序进行了优化,增加 了火药启动器与发生器的衔接工作时间:0s火药启 动器点火,0.7s氧先与氢进入发生器,0.8s氢进入发 生器,发生器与启动器工作衔接时间约0.3s。

图 8 为发生器与火药启动器联合点火试验的压 力与温度曲线。试验结果表明,火药启动器点火正 常,在火药启动器工作过程中,发生器点火过程快 速、平稳。火药启动器与发生器联合工作时间段,发 生器最高参数约为发生器单独工作阶段的1.12倍, 试验参数控制在组件允许的安全范围内。

Fig. 8 Experimental results of gas generator tests

3.3.3 推力室点火试验

发动机推力室点火试验的主要目的是获取发动 机推力室在真实推进剂下的预冷特性,推力室充填 特性,以及推力室低压点火燃烧特性。

根据仿真分析确定的推力室点火试验起动程序 为:0s预冷推力室夹套,2.7s开推力室氧阀,推力室点 火,3.1s火药启动器点火工作驱动涡轮泵起旋。

图9为推力室点火试验冷却夹套预冷温度曲线。 从图中可以看出,预冷期间由于两相流换热,冷却夹 套压力持续波动,最大幅度约0.1MPa,但该波动会随 着预冷过程逐步收敛直至稳定;预冷约3s时,夹套出口温度降至100K。

Fig. 9 Pressure and temperature of regeneratively cooled inner liner during thrust chamber tests

图 10为推力室点火试验压力曲线。试验结果表 明,氧进入推力室后,推力室顺利点火。火药启动器 工作后,涡轮泵参数快速爬升。在 3.3s 左右,推力室 夹套入口液氢处于临界压力附近,夹套内的液氢从 亚临界换热向超临界换热过程转变,传热效率不稳 定,夹套内形成气阻,氢供应系统压力出现大幅波 动。3.5s 左右,虽然系统压力远高于临界点,但此时 推力室喷注器压降远离设计工况,由于压降过小导 致推进剂雾化燃烧状态不佳,氢供应系统压力存在 低频燃烧振荡现象。该压力脉动现象是推力室低工 况点火试验的工作点远离设计工况导致,属正常现 象,但在后续制定整机点火起动时序时应尽量减小 该过渡时间。

3.3.4 发动机点火试验

发动机点火试验的目的是研究发动机系统及各 组件的工作协调性,确定并验证发动机起动工作程 序,并获取发动机组件初步性能参数。发动机状态 与推力室点火试验状态一致,不同之处为推力室点 火试验时发生器不工作,而发动机点火试验发生器 接力工作,发动机进入主级工况。 在分系统试验和仿真计算分析的基础上,制定 了发动机点火试验的起动程序,即推力室在贮箱压 力下预冷点火,火药启动起旋涡轮泵进入初级工况, 燃气发生器接力加速发动机进入主级工况。图11为 发动机点火起动曲线。从图中可以看出,推力室低 压下点火正常,火药启动器顺利起旋涡轮泵,火药启 动器单独工作时,发动机工况约30%~40%。发生器 点火接力后,发动机参数加速爬升,约1s后即达到 90%工况。图12为仿真计算与实际试验发动机室压 对比情况,计算与试验结果吻合很好。

Fig. 11 Pressure of the first prototype engine test during start-up

Fig. 12 Simulation results comparison with ground test results of engine start-up process

3.4 试车故障仿真分析

发动机系统由不同的组件以及气液系统组成,

各组件之间紧密联系。由于某种原因导致发动机组件工况发生变化时,相应的其它组件工况也会发生变化,继而使得发动机整体工况偏离正常值,参数不协调,甚至组件损坏等问题。大推力氢氧发动机某次试验过程中,由于氧涡轮泵泵端的液氧与涡轮端的富氢燃气串腔爆燃,导致涡轮转子叶片烧蚀,发动机参数大幅下降。图13为发动机分解后的涡轮转子烧蚀外貌。

Fig. 13 Burning of turbine rotor

在发动机瞬态特性仿真模型的基础上,引入故 障因子,建立发动机故障仿真模型,通过仿真研究故 障模式下发动机参数变化的规律和特征。涡轮转 子烧蚀后,涡轮做功能力下降,涡轮效率降低。根 据发动机故障模式分析与平衡参数计算结果,设定 如图14所示的氧涡轮效率异常曲线。

Fig. 15 Simulation results comparison with test results of engine fault process

4 结 论

本文对大推力氢氧发动机瞬态特性进行了仿真 分析和试验研究,得到以下结论:

(1)通过仿真分析与试验研究确定的大推力氢 氧发动机推力室在贮箱压力下预冷点火,之后火药 启动器点火,燃气发生器衔接的发动机起动方式,组 件功率分配合理、起动加速平稳。

(2)推力室氧阀采用25%初级开度与100%全开的双开度形式,氧涡轮侧设置10%分流流量的燃气分流阀,燃气发生器在火药启动器工作至70%~80%时间段点火接力的系统优化配置方案,有利于控制发动机点火起动混合比,提高起动可靠性。

(3)通过添加故障因子,仿真计算准确反映了故 障发生后发动机性能参数动态变化特性,当涡轮效 率由于故障从 0.29 降至 0.19 时,发动机工况降至故 障前的 78% 工况,当效率降至 0.06 时,发动机工况降 至故障前 20% 工况,与试验数据吻合较好,可用于故 障分析定位。

大推力氢氧发动机的动态工作过程是一个强烈 耦合的复杂瞬态动力学过程,其瞬态特性研究内容 广泛丰富。本文仅对发动机起动与某些故障过程进 行了一些研究工作,限于研究对象的复杂性和能力 限制,进行了适当简化。目前建立的分析模型在精 准描述真实物理化学过程方面还存在不足,对实际 分析结果有一定影响。在后续研究中,将进一步深 化理论研究,完善模型,更为高效和准确地获取发动 机瞬态特性与稳定裕度。

参考文献

- [1] 顾明初.加快大推力氢氧发动机研制迎接21世纪[J].
 导弹与航天运载技术,2000(1):12-16.
- [2] 顾明初.国外氢氧发动机研制的一些近况[J].导弹与 航天运载技术,2001(1):51-54.
- [3] Seymour D C, Martin M A, Nguyen H H. Transient Mathematical Modeling for Liquid Rocket Engine Systems: Methods, Capabilities, and Experience [R]. Tennessee: 15th International Symposium on Space Propulsion Chattanooga, 2003.
- [4] Durteste S. A Transient Model of the VINCE Cryogenic Upper Stage Rocket Engine[R]. AIAA 2007–5531.
- [5] Ogaware A, Koganezawa T, Watanabe D. Progress in Rocket Engine Simulations in MHI[R]. Okinawa: 28th International Symposium on Space Technology and Science, 2011.
- [6] 尘 军,王 桁.系统动态仿真技术在高压补燃氢氧
 发动机研制中的应用[J].导弹与航天运载技术,2002
 (5):29-35.
- [7] 刘 昆,张育林,程谋森.液体火箭发动机系统瞬变
 过程模块化建模与仿真[J].推进技术,2003,24(5):

401-405. (LIU Kun, ZHANG Yu-lin, CHENG Mousen. Modularization Modeling and Simulation for the Transients of Liquid Propellant Rocket Engines[J]. *Journal of Propulsion Technology*, 2003, 24(5): 401-405.)

- [8] 郑大勇,王维彬,乔桂玉.新一代运载火箭50吨级氢 氧发动机研制进展[J].导弹与航天运载技术,2016 (5):11-16.
- [9] 格列克曼.液体火箭发动机自动调节[M].顾明初, 郁明桂,邱明煜,译.北京:宇航出版社,1952.
- [10] 刘红军.补燃循环发动机静态特性与动态响应特性研究[D].西安:航天工业总公司第十一研究所,1998.
- [11] 刘 昆,张育林.分布参数管道的一种改进的小分段数有限元模型[J].国防科技大学学报,1998,20(4): 5-8.
- [12] Binder M P. A Transient Model of the RL10A-3-3A Rocket Engine[R]. AIAA 95-2968.
- [13] Kanmuri A, Kanda T, Wakamatsu Y. Transient Analysis of LOX/LH, Rocket Engine[R]. AIAA 89-2736.
- [14] Sassniek H D, Kruelle G. Numerical Simulation of Transients in Feed Systems for Cryogenic Rocket Engines [R]. AIAA 95-2967.
- [15] Binder M P. A Transient Model of the RLIOA-3-3A Rocket Engine[R]. NASA CR 195478, 1995.
- [16] Kuo F Y. Space Shuttle Main Engine Real-Time Stability Analysis[R]. AIAA 93-2078.
- [17] 曹泰岳.火箭发动机动力学[M].长沙:国防科学技术 大学出版社,2004.
- [18] 张育林,刘 昆,程谋森.液体火箭发动机动力学理 论与应用[M].北京:科学出版社,2005.

(编辑:朱立影)