高背压等离子点火器及其液体燃料点火特性 实验研究^{*}

曹亚文^{1,2},李 斌^{1,3},王 飞^{1,2},林 榕^{1,2},韩先伟^{1,2},谭 畅^{1,2}

(1. 西安航天动力研究所 液体火箭发动机技术重点实验室,陕西 西安 710100;
2. 陕西省等离子体物理与技术应用重点实验室,陕西 西安 710100;
3. 航天推进技术研究院,陕西 西安 710100)

摘 要: 航天应用的液体火箭发动机及燃烧型加热器燃烧室室压高、燃料流量大、温度低、有重复启动需求,实现安全可靠点火的难度较大。针对这些需求,研究了一种采用高背压设计的电弧等离子体点火器。实验研究了Ar,N₂气体工质在高进气压力下的伏安特性,发现N₂在宽压力范围内适用于点火。发射光谱分析表明,在高达数 MPa的进气压力下,Ar,N₂等离子体射流电子密度符合局部热力学平衡判据(LTE判据),点火能量集中。N₂等离子体整体温度低于Ar,但阳极喷口附近温度高于Ar,N₂等离子体射流火焰长,卷吸沿程空气造成射流平均温度偏低,但有助于低温液体推进剂的蒸发混合和强化点火。等离子体射流引起了臭氧和氮氧化物的形成,具有促进点火和化学反应的作用。背压提高引起电源输出电压升高,提高供气压力和电流,有助于点火器在高背压环境中稳定电压。燃烧型空气加热器燃烧室的点火实验发现,采用N₂等离子体喷注面中心点火,可以在短时间内完成酒精-空气和酒精-液氧-空气的点火,最高燃烧室室压接近5MPa时,点火器仍能稳定工作,多次使用电极烧蚀不明显,在液体火箭发动机的重复可靠点火方面具有很好的应用前景。

关键词:液体火箭发动机;等离子体;点火器;背压;发射光谱;液体推进剂 中图分类号: V431 文献标识码: A 文章编号: 1001-4055 (2021) 07-1570-11 DOI: 10.13675/j.cnki. tjjs. 200554

Experiment Researches of High Back Pressure Plasma Ignitor and Liquid Fuel Ignition Characteristics

CAO Ya-wen^{1,2}, LI Bin^{1,3}, WANG Fei^{1,2}, LIN Rong^{1,2}, HAN Xian-wei^{1,2}, TAN Chang^{1,2}

Science and Technology on Liquid Rocket Engine Laboratory, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China;
 Shaanxi Key Laboratory of Plasma Physics and Applied Technology, Xi'an 710100, China;

3. Academy of Aerospace Propulsion Technology, Xi'an 710100, China)

Abstract: Combustion chamber of cryogenic liquid rocket engine and air heater has characteristics of high pressure, heavy flow of cryogenic fuels and demands repeated starts, for which the safety and reliable ignition is difficult. A high back pressure plasma ignitor meeting with these requirements was designed and studied. The voltage-current characteristics of Ar and N_2 working at high inlet pressures were studied by experiments and results showed that N_2 worked well within a wide pressure range. Emission spectrum diagnose showed that the electron

基金项目:国家自然科学基金(11475131);国家重点研发计划项目(2019YFC1907000)。

^{*} 收稿日期: 2020-07-28; 修订日期: 2021-02-05。

通讯作者: 曹亚文, 博士生, 研究领域为电弧等离子体技术。E-mail: yawencaox@126.com

引用格式:曹亚文,李 斌,王 飞,等.高背压等离子点火器及其液体燃料点火特性实验研究[J]. 推进技术, 2021, 42 (7):1570-1580. (CAO Ya-wen, LI Bin, WANG Fei, et al. Experiment Researches of High Back Pressure Plasma Ignitor and Liquid Fuel Ignition Characteristics[J]. *Journal of Propulsion Technology*, 2021, 42(7):1570-1580.)

density of Ar, N_2 plasma jets reached the local thermodynamic equilibrium (LTE) criterion and showed concentrated ignition power under inlet pressures of several MPa. The average temperature of N_2 plasma was lower than that of Ar, while just the reverse at the anode outlet. N_2 plasma jet lasted longer in atmosphere, sucking and mixing the air, which resulted in the temperature drop but would accelerate the evaporation, mixture and ignition of cryogenic liquid fuels. The plasma caused the formation of active particles like ozone and oxynitride, which would also promote the ignition and chemical reactions. Higher back pressure caused higher output voltage, and raising inlet pressure and current helped to stabilize the output voltage under high back pressure. Ignition experiments in the combustion chamber of combustion–type air heater showed that N_2 plasma could ignite the alcohol–air and alcohol–LOX–air within a short period when placed in the center of the injection surface. The ignitor worked stably even the back pressure reached 5MPa, and repeated operations caused slightly electrode erosion, showing prospects in reliable and repeated ignition of liquid rocket engine.

Key words: Liquid rocket engine; Plasma; Ignitor; Back pressure; Emission spectrum; Liquid propellant

1 引 言

液体火箭发动机及燃烧型加热器等地面试验系 统通常采用液体氧化剂和燃料,具有较高的燃烧室 压力。新型液体火箭发动机多采用液氧、液氢、液态 烷烃等低温推进剂,点火环境恶劣,点火能量和安全 性要求较高。此外,多次启动和可复用的液体火箭 发动机也对点火技术提出了快速可靠可复用的要 求。安全可靠的高能点火技术对液体火箭发动机及 其地面试验系统至关重要。

电弧等离子体点火器利用热等离子体能量集 中、化学反应活性粒子多的特点,可在极短时间内引 发燃烧反应,完成燃料点火^[1]。相比其它点火方式, 等离子体射流点火具有点火能量密度高、安全性较 高等优点,此外等离子体点火器系统结构简单、主体 结构无需浸润在推进剂环境中,具有较长的寿命和 灵活的启停特性。在航天发动机领域,电弧等离子 点火器既可应用于液氧-煤油、液氧-液甲烷、液氧-液氢等新型液体火箭发动机点火,也可应用于组合 动力发动机点火。基于液体火箭发动机燃烧室结构 设计,采用液氧-酒精、液氧-异丁烷等燃料组合,为 组合火箭发动机试车、航天飞行器热防护、液体发动 机涡轮吹风试验等提供地面试验条件的燃烧型加热 器,在航天领域应用前景广泛^[1-3]。

文献[4-5]及张鹏等^[6]的研究表明,气体放电产 生的氦氧化物、臭氧等长寿命活性粒子能够增大火 焰传播速度,强化点火过程。何立明等^[7-9]对用于航 空发动机的等离子体射流点火器的结构参数和点火 特性的影响进行了大量实验研究。于锦禄等^[10]发 现,放电环境气压的升高引起等离子体点火器的临

界放电电压的增大。在亚燃/超燃冲压发动机领域, 国内外对等离子体射流点火进行了大量的机理研究 和工程验证[11-13],但这些研究的焦点多集中于高气流 速度下的等离子体点火,与液体火箭发动机类型燃 烧室室压高达数MPa的点火条件存在明显差异。在 液体火箭发动机类型燃烧室点火方面,日本 JAXA 采 用 60Hz 低频交流电诱导低电离能的气体 He产生等 离子体射流,对液氧-液甲烷实现了一定混合比下的 可重复点火^[14],但技术成熟度较低,燃烧室压仅 0.8MPa。俄罗斯对液体火箭发动机等离子体点火的 研究和应用相对较多,RD-161使用交流放电氧气等 离子体在实际的航天应用中实现了液氧-煤油发动 机多次点火^[3], Yusupov 等^[15]则设计一种压力可达 2.5MPa的直流电弧等离子体点火器,用于大型燃烧 型空气加热器的点火。国内,西安航天动力研究所 在液体火箭发动机类型燃烧室低温推进剂和高室压 环境下的电弧等离子体点火助燃方面做了较多工程 化的研究[3]。总体而言,目前国内外关于液体火箭发 动机类型燃烧室等离子体射流点火的报道和研究 较少。

适用于液体火箭发动机类型燃烧室的等离子体 点火器研制的难点在于这种类型的燃烧室多采用高 室压和低温推进剂,所以,不同于一般条件下使用的 等离子体点火器的常压设计,针对这种点火需求的 电弧等离子体点火器需采用高背压设计,以保证等 离子体射流的速度、长度和能量,避免恶劣环境中点 火能量不足引起熄火或点火延迟时间过长引起爆 燃,同时,保证点火端压力以避免燃烧室高室压引起 射流火焰回流损坏点火器结构。此外,液体火箭发 动机类型的燃烧室点火过程中迅速建立的高室压环 境对应陡峭的点火器背压曲线,对电弧和射流的稳 定性和电源性能要求更高。同时,在高气压下工作 的点火器粒子密度大,电子和重粒子之间碰撞频繁, 射流整体温度与电子温度更为接近^[16],工况恶劣,更 容易发生断弧或结构烧坏。

本文针对液体火箭发动机类型燃烧室的动态高 室压和低温推进剂特点,研究了一种可以稳定工作 在高背压环境下的台阶式阳极电弧等离子体点火 器,通过实验研究了该等离子体点火器在不同气体 工质、进气压力和功率下形成的等离子体电弧的电 特性,并通过发射光谱采集得到了不同工况下氩/氮 等离子体射流的电子激发温度和电子密度,并初步 研究了等离子体射流对环境空气的影响,获得了这 种等离子体点火器的参数特性并确定了合适的点火 工质。实验还对点火器在高背压环境中的参数特性 和稳定性进行了模拟实验研究,并在地面实验台进 行了液体工质、高室压燃烧室的点火实验研究,验证 了这种等离子体点火器在液体火箭发动机类型燃烧 室中点火的可行性,实验获得点火器特性及其液体 燃料点火特性以匹配液体火箭发动机类型燃烧室点 火参数,促进点火器设计改进。

2 方 法

2.1 实验系统

电弧等离子体发生器弧室内部剖面结构示意图 和点火器实物见图1。为在动态高背压环境下实现 稳定电弧,不同于常见的直孔和喇叭状阳极,点火器 采用台阶式阳极以约束弧根运动。电源电路高压模 块(10kV)用于击穿电极间的高气压工质气体,建立 电离通道,恒流模块产生稳定电流,为等离子体射流 提供持续的能量。

等离子体点火器工作电流 12~35A。为实现 2~ 10MPa 宽范围高背压 p_{back}环境下对大流量低温推进 剂的稳定重复点火,点火器自身进气压力 p_{in}设为 2~

Fig. 1 Plasma ignitor of high pressure

 $10 MPa_{\,\circ}$

为方便观察与实验,等离子体点火器在高进气 压力下的电特性实验和射流参数实验在大气压背景 下进行,工质采用常用的等离子体点火工质Ar和N₂。 点火器射流光谱诊断系统见图 2,实验使用 LTB Aryelle 150 光谱仪,波长 190~1100nm,分辨率 0.01nm。 等离子体自由射流下游副产物采用气体成分分析仪 测量。

Fig. 2 Spectrum diagnosis system of plasma jet

点火器背压实验在氮气背压腔中进行,调节背 压腔排气孔和氮气流量,可获得0~5MPa的背压。

液体工质点火实验在燃烧型加热器上进行,燃烧型加热器具有与液体火箭发动机相似的燃烧组织 方式和较高的燃烧室压力,可为组合动力发动机试 车、航天飞行器热防护、液体火箭发动机涡轮吹风试 验提供合适的气流环境。在燃烧型加热器上开展液 体工质点火实验,对液体火箭发动机类型的燃烧室 点火环境具有较好的模拟效果。点火器安装在喷注 面中心位置,如图3所示。实验分别采用酒精-空气 和酒精-液氧-空气作为燃烧工质。

Fig. 3 Practical ignition experiments

2.2 射流参数光谱诊断计算模型

LTB ARYELLE 150光谱仪为中阶梯光谱仪,在 波长测量范围内,总的衍射级数达到了80级,在低波 长段,每个衍射级次约覆盖10nm的范围,在高波长 段,每个衍射级次覆盖20~25nm的范围,每个级次对 应的波长范围上,中心处衍射效率最大并向两翼递 减,光强度需经光栅效率曲线的校正^[17]。本文采用 标准卤素灯测量,并通过分段插值获得可见光波段 的光栅效率曲线见图4。

Fig. 4 Grating efficiency

等离子体的激发温度主要反映等离子体电子温度。如处于某一能量的激发态的粒子通过电子碰撞激发和退激发过程达到了平衡状态,则处于第q能级的粒子数密度 n_符合 Boltzmann 分布^[18]

$$n_q = \frac{n}{Z} g_q \exp\left(-\frac{E_q}{T_{\rm exc}}\right) \tag{1}$$

 $Z = \sum_{q} g_{q} \exp\left(-\frac{E_{q}}{T_{exc}}\right)$ 为 配 分 函 数 , g_{q} 为 统 计 权

重, E_q 是q能级能量, T_{exc} 为激发温度。

电子从能级 $q \rightarrow p$ 跃迁,辐射强度 I_{w} 为

$$I_{qp} = N_0 \frac{g_q}{g_0} A_{qp} h \gamma_{qp} \exp\left(-\frac{E_q}{kT_{exc}}\right)$$
(2)

 N_0 为元素的原子数密度; g_0 为基态能级统计权 重; A_{q_p} 为能级跃迁几率;h为普朗克常量; γ_{q_p} 为能级跃 迁发射谱线的频率,k为波尔兹曼常数。取对数并使 用换底公式,得到

$$\lg \frac{I_{qp} \lambda_{qp}}{g_q A_{qp}} = -\frac{5040 E_q}{T_{exc}} + C$$
(3)

 I_{qp} 和 λ_{qp} 可测, g_q , A_{qp} , E_q 可从NIST数据库获得,通 过拟合斜率可计算激发温度。

实验中工况连续调节,对不同工况进行了两到 三次重复光谱采集实验,筛选特征谱线变化趋势合 理的谱图进行参数计算。对同种气体工质,选用同 一气压不同工况下共有的特征谱线进行玻尔兹曼谱 图计算,通过拟合的相关性和显著性检验对结果的 精度与合理性进行判断。

电子密度是体系热平衡程度的重要判据,等离 子体电子密度足够大时,可认为体系达到局部热力 学平衡。根据Stark展宽理论,Stark展宽仅与等离子 体的电子密度有关。因此测量谱线轮廓的半高全宽 即可得到电子密度,简化算法计算电子密度为^[19]

$$\Delta \lambda_{\rm width} = 2 \times 10^{-16} \omega n_{\rm e} \tag{4}$$

 $\Delta \lambda_{\text{width}}$ 为 Stark 展宽, nm, ω 为电子碰撞半宽度, mm·cm³, n_e 为电子密度, 1/cm³, 单位可换算为 1/m³, 对

某种气体特定波长,ω为温度的函数。

3 结果与讨论

3.1 等离子体射流形态及点火器电特性

相同进气压力 p_{in}和电流条件下,Ar和 N₂点火的 等离子体射流见图 5。Ar等离子体射流呈白色,喷口 处亮度最高,射流短、面积小;N₂等离子体射流中心 呈白色,边区及尾焰呈黄色,射流长、区域大,环境存 在明显的过渡区。

改变气压和电流获得 Ar 等离子体和 N₂等离子体的伏安特性曲线(*U-1*),见图 6。在同样的进气压力和电流下,Ar 等离子体的弧电压远低于 N₂等离子体,这一特性与实验观察到的射流长度现象相符合。Ar 的电离能较 N₂低,能够在更低的能量作用下电离,进入大气后也更容易复合。由于 Ar,He 等惰性气体低

电离能的特点,起弧容易,对电源要求较低,作为点 火工质在一些液体推进剂点火研究中得到了应 用^[14],但从射流长度和点火能量来看,N₂点火性能优 于Ar。

由图 6 看到, N₂工质呈现下降的伏安特性, 弧电 压随 p_{in}的增大而升高。进气压力较低时, Ar 弧电压 随电流增大先下降后升高, 并随着压力升高逐渐呈 现上升的伏安特性。

对等离子体的热物理性质和输运性质的研究表 明^[20],等离子体的电导率同时受到温度和压力的影 响,进而影响到电弧的伏安特性。现有的研究文献 中[10,13],一般低进气压力下的等离子体电弧会表现出 下降的伏安特性。在本文使用的高气压等离子体点 火器设计中,阳极弧根通过台阶结构约束在较小的 电极区域上。研究认为,对这种台阶式突扩形输出 电极结构的等离子体发生器,在常规电流区间内,伏 安特性会随电流增大呈现典型的"U"形^[16]。使用Ar 工质时,弧根落在台阶上,Ar在较小电流下就容易电 离。p_{in}=2.5MPa的工况下,当电流增大时,电阻率下 降,同时温度升高,通道内气压进一步提高,弧长增 长,两种作用的综合影响使伏安特性曲线出现下降 段。而电流进一步增大时,Ar在通道内几近完全电 离,此时电流值的影响就占据主导,呈现上升的伏安 特性。在更高的气压下,电流和温度提高始终导致 弧电压处于上升趋势。N,作为气体工质时,电弧始 终被限制在台阶回流区后的一段距离上运动,平均 弧长较长,此外,N,相对于Ar比较不易电离,增大电 流对电阻率影响较大,所以弧电压呈现下降趋势且 变化值较小。

由于台阶式阳极和较高的进气压力,p_{in}变化对 Ar电弧的影响与普通气压设计不同,故若以Ar作为 点火工质,p_{in}为2~5MPa时,如电流<25A,提高p_{in}对增 强点火能量意义不大。在8MPa的供气压力下,Ar电 弧具有上升的伏安特性,是理想的工作状态。而采 用 N₂作为点火工质时,虽然表现为轻微下降的伏安 特性,但提高供气压力和电流都可以明显提升点火 能量,具有较好的稳定性。

3.2 等离子射流电子激发温度

由于 Ar和 N₂等离子体射流形态差异较大,因此 主要通过轴线上的透镜将分散光聚焦至光纤以采集 射流整体光谱。相同电流下部分波段 N₂和 Ar射流光 谱信息如图 7 所示。

3.2.1 Ar等离子体电子激发温度和密度

调节Ar供应压力和电源输出电流,测量了Ar等

离子体射流的发射光谱,并根据光栅效率曲线修正 谱线强度。选择一组典型 Ar I 谱线,参数见表1 (NIST)。表中参数与前述玻尔兹曼法拟合公式相对 应,λ为选择的谱线波长,A为能级跃迁几率,E_u为能 级能量,g_u为统计权重。

Fig. 7 Spectrum of N₂ and Ar plasma jets

Table 1 Ar I spectroscopy parameters

λ/nm	A/s^{-1}	$E_{\rm u}/{\rm eV}$	g_{u}
693.7664	3.08×10^{6}	14.69363880	1
714.7042	6.30×10 ⁵	13.28263891	3
727.2936	1.83×10 ⁷	13.32785693	3
866.7944	2.43×10 ⁶	13.15314376	3
912.2967	1.89×10 ⁷	12.90701519	3

图 8 给出了计算得到的不同压力和功率下 Ar 等 离子体射流的电子激发温度。

可以看到,在相同的供气压力pin下,电子激发温

Fig. 8 Electron excitation temperature of Ar plasma at 2.5MPa, 5MPa, 8MPa

度基本随功率的增大而单调升高。这是因为p_{in}一定时,提高电流增大了注入功率,对电弧加热起到了明显的促进作用。

在不同的 p_{in}(2MPa,5MPa和8MPa)下,可以看到 2kW 对应的电子激发温度分别为7250K,8400K, 7400K,2.5kW 对应的电子激发温度分别为7350K, 9000K,8000K,3kW 对应的电子激发温度分别为 7600K,9480K,8400K,将 p_{in}从2MPa提升至5MPa,气 流量增大而功率不变的情况下,电子激发温度却出 现了提高。分析原因,可能是提高压力导致射流温 度梯度变大,即 p_{in}提高导致电流通道压缩,使电弧区 电流密度增大,从而导致射流高温区减小的同时,最 高温度升高^[21]。p_{in}进一步提高至8MPa时,p_{in}提高引 起的电流通道压缩已趋于极限,而提高p_{in}气体流量 增大,功率不变的情况下,气体平均焓值下降,电子 激发温度下降。

Ar等离子体电子密度选用 696.54nm 处谱线展宽 计算。该波长处仪器展宽为 0.1161nm, 谱线半高全 宽由软件读出。根据该谱线 Stark 展宽参数拟合得到 电子碰撞半宽度 $\omega = 0.0013 T^{0.3748[22]}$, 由前述计算的电 子激发温度求得各工况点电子碰撞半宽度, 代人简 化后的 Stark 展宽公式得到电子密度。 $p_{in}=5MPa$ 时, 电子密度如图 9 所示。

有研究认为^[23],等离子体局部热力学平衡状态 的判定标准为电子密度达1×10²²/m³,本实验工作参数 下,Ar等离子体射流电子密度达到10²²/m³以上,满足 局域热力学平衡的判定标准,可认为热等离子体的 温度与激发温度、电子温度相等。

图 10 给出了 Ar 等离子体在 p_{in}=2.5MPa 和 8MPa 的电子密度,对比温度曲线发现, Ar 等离子体的电子 密度随功率单调变化。

3.2.2 N₂等离子电子激发温度和密度

N₂等离子体射流发射光谱的多数谱线的绝对强

Fig. 10 Electron density of Ar plasma at 2.5MPa and 8MPa

度随功率明显增强。选择一组典型NI谱线并修正 谱线强度,参数见表2。

Table 2 N I spectroscopy parameters

	λ/nm	A/s^{-1}	$E_{\rm u}/{\rm eV}$	g_{u}
7	44.229	1.19×10 ⁷	11.9955752	4
8	318.487	8.21×10 ⁶	11.8444760	6
8	322.314	2.62×10 ⁷	11.8374290	2
8	862.924	2.67×10 ⁷	12.1263786	4
8	370.325	2.16×10 ⁷	11.7500910	2
8	371.170	1.29×107	11.7528948	4
8	371.883	6.54×10 ⁶	11.7575318	6

图 11 给出了不同压力和功率下计算得到的 N₂等 离子体射流的电子激发温度。结果显示 N₂等离子体 温度比 Ar等离子体的明显偏低。分析原因除选择的 计算谱线和谱线自吸收引起一定误差外,还可能是 N₂等离子体射流进入环境后,由于射流较长,边区卷 吸了较多的冷空气并形成了加热效应,因此自由射 流整体温度相对较低。

2.5MPa, 5MPa, 8MPa

在*p*_{in}=2.5MPa工况下,等离子体激发温度随功率的提高单调增大,数据处理也发现在该工况下参数 拟合相关度非常高,结合文献研究认为,在较低气压下,射流高温区整体面积较大,且对周围空气卷吸量 较小,温度分布比较平均,功率提高对射流整体产生加热效应^[21]。提高*p*_{in}至5MPa,*p*_{in}增大不仅增大了气体流量,也对电弧通道产生压缩,同时提高电流强化了弧柱附近气体的热膨胀,射流速度在压力和温度的双重作用下提高,对周围空气的卷吸作用增强,导致 N₂等离子体射流温度在空间分布的不均匀性增强,功率的提高难以弥补空气卷吸量增加导致的平均温度下降,因此温度随电流的增大反而呈现降低的趋势。进一步提高*p*_{in}至8MPa,射流激发温度随电流的增大先降低后升高,最后基本保持不变,分析原因是在高压力和足够大的电流条件下,射流形态及其对周围空气的卷吸达到了饱和,射流长度几乎不再随功率提高而增长,功率提高重新主导了整体温度的升高。

选择 746.831nm 处谱线计算 N₂等离子体的密 度^[22],该波长处仪器展宽为 0.12447nm。拟合电子碰 撞半宽度 ω = 0.0016T^{0.3682},计算 N₂电子密度如图 12 所示。N₂等离子体射流电子密度均达到 10²²/m³量级 以上,满足局域热力学平衡的判定标准。虽然不同 的气压下,电流增大对电子密度的影响效果有所不 同,但 N₂等离子体的电子密度总是随着功率的提高 而增大,说明电流和功率的增大会明显提高 N₂电离 度,即使因为对空气的卷吸作用增强造成一定的温 度波动,对电子密度的趋势影响也不大。电子密度 的计算结果也说明在 MPa 级的进气压力下,等离子 体射流的热平衡度较高,点火能量集中,有助于强化 液体火箭发动机燃烧室高室压、大流量、低温推进剂 环境中的点火。

Fig. 12 Electron density of N₂ plasma at 2.5MPa, 5MPa and 8MPa

3.2.3 等离子温度空间分布特点

将光纤探头固定至点火器出口平面径向位置上,调节点火器参数至低电流高电压的工况,使阳极 弧根靠近喷口并采集到阳极喷口附近电弧射流的光 谱信息。此工况Ar等离子体电参数为13.5A,140V, N₂等离子体电参数为13.5A,270V。

选择 Ar I 谱线(763.511,801.479,810.369, 840.821,842.465,922.449nm)和 N I 谱线(818.487, 821.072,856.801,865.589,868.34,872.889,874.739 nm),根据玻尔兹曼谱图法计算电子激发温度见图 13,图中 k 为拟合直线的斜率,r²为拟合相关系数,P value为显著性水平的P 值检验。Ar 等离子体温度为 5676K,与射流测得的其它工况点整体温度值趋势一 致,而 N₂等离子体温度为9254K,明显高于其它工况 点整体温度值。

Fig. 13 Electron excitation temperature of plasma at torch outlet (Ar,N₂)

Ar等离子体射流整体温度高于同电流下 N₂等离 子体,而点火器出口位置 Ar等离子体温度明显低于 N₂等离子体,说明 Ar易电离易复合的特性导致 Ar等 离子体在环境中存在时间短,对环境气体加热作用 小,且空气中 Ar含量极低,所以采集到的光谱信息也 大量来自射流中心高温区。而 N₂等离子体长射流在 卷吸掺混周围空气的过程中,边区和尾焰温度不断 下降,测得的 N₂等离子体谱线有相当一部分来自于 被卷吸的空气和被冷却的 N₂等离子体。虽然 N₂等离 子体射流自身温度在卷吸掺混环境气体的过程中不 断下降,但从低温液体工质点火的角度来看,这种长 射流卷吸的特性有助于强化推进剂的受热蒸发,加 强射流中的活性粒子与推进剂的接触混合,缩短点 火延迟时间。

3.3 等离子体射流副产物

使用 Ar和 N₂点火时都有明显气味产生,在 5MPa 供气压力下增大电流,在 Ar和 N₂等离子体射流下游 轴线同一位置处使用气体成分分析仪监测不同工况 下氮氧化物浓度时发现(见图 14),Ar等离子体射流 在各个工况下几乎不会产生 NO₂,因此 Ar点火时环境 中的气味可能来自高温引起空气中氧电离再结合形 成的臭氧。Ar本身性质稳定,且等离子体在空气中 迅速复合,对环境的影响主要体现在高温引起氧电 离和臭氧的形成。N₂等离子体则明显引起了环境中 NO₂浓度的变化,且浓度随电流增大。N₂电离形成活 化粒子与高温引起的O₂电离产物反应形成NO₂。等 离子体射流尤其是N₂等离子体副产物的存在验证了 等离子体自身产生活化粒子,高温也会引起环境空 气产生活化粒子,对点火助燃和化学反应存在促进 作用^[6]。

Fig. 14 Concentration of NO₂ at downstream of the free plasma jet

3.4 点火器高背压特性和稳定性

为研究点火器在不同环境压力下的特性,分别 在真空舱、大气压和背压舱中进行了N₂等离子体点 火器的点火实验,图15给出了点火实验图像。

与大气环境中相比,等离子体射流在高真空环 境中较为发散,而高背压环境中射流低温尾区面积 受到明显的压缩变小。

使用大气压环境下可使点火器稳定工作的两级 调节高精度恒流源 S1 对进气压力 4MPa,电流值 18.5A的 N₂等离子体点火器进行 0~2.5MPa高背压下 的测试实验,观察到电源输出电压值在 105~160V 变 化,然而当*p*back进一步增大至 3MPa 时,电压波动幅度 过大,稳定性变差,点火器断弧。为应对背压变化 的影响,更改电源输出控制方案,采用简化的电流 控制方式,并采用三极管电流控制以减小电流的纹 波系数,加强电压调节能力。采用改进电源 S2 对不 同*p*in (4.5~9.3MPa)的 N₂点火器在高背压环境(0.1~ 4.5MPa)下测试,输出电压见图16。

Fig. 16 DC voltage changing with backpressure(N₂,S2)

背压提高引起喷口附近气体压力和密度提高, 放电通道电阻会明显增大,维持电弧受到的阻力增 大,相应电源输出电压提高,功率增大。另一方面, 高背压环境也可能对阳极喷口附近弧根位置产生挤 压,导致弧根位置变化,电弧长度缩短,弧电压下降。 但是,台阶型阳极设计相比直管和喇叭型阳极,能够 较好地限制阳极弧根的自由移动引起的弧电压的剧 烈波动,加强电弧的稳定性。从图16实验结果可以 看到,提高供气压力,增大电流,能够较好地维持电 压在高背压环境中的稳定。

3.5 液体工质等离子体点火实验

图 17为使用氮气等离子体进行燃烧室点火实验的部分实验图像。点火成功后,燃烧火焰饱满稳定。

Fig. 17 Images of N₂ plasma ignition

图 18 给出了酒精-空气燃烧型加热器点火实验 的典型无量纲压力曲线,由于点火器在燃料工质充 填之前开启,为分析整个点火过程,根据相关研 究^[24],可大致将工质进入燃烧室到燃烧室室压迅速 升高的时间定义为点火时间t_i,将室压突跃时刻至达 到额定值 95%的时间间隔定义为着火延迟时间t_s,分 别对应着火点和火焰传播过程。图中室压突跃时燃 烧室内温度也开始同步抬升,该时刻为着火点,点火 器等离子体射流该过程的作用是引燃工质,当室压 达到额定值 95% 后关闭等离子体点火器,燃烧可以 自持,视为点火结束,火焰传播过程中,点火器等离 子体射流的作用是稳燃。在实验中发现,在着火延 迟时间段内,对酒精-空气工质,某些工况下着火点 之后如点火器提前关闭,可能会导致燃烧室建压过 程中断,即虽然点火成功,但由于缺少稳燃能量而导 致火焰无法传播开。

Fig. 18 Typical curve of N₂ plasma ignition

对混合比为定值,酒精流量为 $0.025\sim0.069$ kg/s, 室压 p_{e} 为 $1.1\sim3.2$ MPa的低中高工况进行5kW的 N_{2} 等 离子体点火实验,结果见表3。对酒精-空气工质,随 着工质流量和室压的增大,点火时间延长而着火延 迟时间缩短。

Table 3 N₂ plasma ignition time of air heater(C₂H₅OH-Air)

p_c/MPa	$t_{\rm i}/{ m s}$	$t_{\rm s}/{\rm s}$
1.1	0.98	0.744
2.4	1.08	0.378
3.2	1.27	0.280

采用酒精-液氧作为燃烧工质,掺混空气的三组 元燃烧型空气加热器,其燃烧组织方式为液氧和酒 精在燃烧室内均匀混合,通过等离子体点火器点燃 并燃烧,产生高温富氧燃气,掺混空气后,获得高压、 高温混合气。图 19给出了室压 3.9MPa高工况下点 火器启动控制和反馈信号与室压建立曲线,由曲线 可以看到,加热器启动可靠,建压迅速、室压平稳,无 压力峰。采用 5kW 的 N₂等离子体点火器,整个点火 过程可在 1s 内完成。

熊剑等^[25]对使用同一燃烧型空气加热器系统和 燃烧工质的实验研究发现,提高工况(0.172~ 1.929MPa)引起点火时间(1.42~0.36s)和着火延迟时 间(1.14~0.11s)缩短。这一规律与酒精-空气的点火 特性有所区别,可能是气-液和液-液充填特性和喷 注方式区别,以及液氧和空气燃烧特性的不同引起 的。从整个点火过程的室压曲线来看,高参数下酒 精-液氧-空气的点火燃烧过程相比酒精-空气更加 迅速和剧烈。

Fig. 19 Typical curve of N₂ plasma ignition (C₂H₅OH-LOX-Air)

在所有实验中,燃烧型空气加热器点火测试的 最高燃烧室压力实际接近5MPa,氮气等离子体点火 器仍能稳定工作并实现快速点火,燃烧室内形成的 压力火焰没有对点火器结构造成破坏,连续点火30 次电极发生轻微烧蚀。等离子体点火在液体火箭发 动机及其燃烧型加热器等地面试验设备的重复可靠 点火方面具有很好的应用前景。

实验仅是对采用液体或者低温液体工质的, 燃烧室压力较高的,具备液体火箭发动机燃烧室 结构和组织燃烧特征的燃烧型加热器进行初步的 等离子体点火实验探索,实验主要验证了本文设 计的高参数等离子体点火器在液体火箭发动机燃 烧室实现点火的适用性和可靠性,液体火箭发动机 等离子体点火的参数优化和规律探索还有待进一 步研究。

4 结 论

本文通过实验研究,得出以下结论:

(1)台阶式阳极结构和 MPa级的供气压力下, N₂ 等离子体弧电压远高于 Ar, 表现为小范围下降伏安 特性。Ar易电离、参数低、点火器设计和实现更为容 易, 但从稳定性、射流长度和点火能量的角度, N₂等 离子体更适合高室压的液体火箭发动机燃烧室 点火。

(2)MPa级的进气压力下,Ar和N₂等离子体电子 密度均大于1×10²²/m³,符合局域热力学平衡判据,说 明等离子体射流热平衡度高,点火能量集中,有助于 高室压、大流量、低温工质环境中的点火。

(3)阳极喷口附近 N₂等离子体激发温度明显高于 Ar,而射流整体温度 Ar等离子体高于 N₂等离子体。相比于 Ar, N₂等离子体形成的长射流对环境气体的卷吸和加热作用更强,有助于强化液体工质的

受热蒸发,加强射流中的活性粒子与推进剂的接触 混合,缩短点火延迟时间。

(4)等离子体自身产生的活化粒子和高温引起 的空气中的氧活化粒子的存在,对点火助燃和化学 反应存在促进作用。

(5)背压提高引起电源输出电压提高,台阶型阳极相比直管和喇叭型阳极,能够限制阳极弧根的自由移动引起的弧电压的剧烈波动,加强电弧的稳定性。提高供气压力,增大电流能够较好地维持电压在高背压环境中的稳定。

(6)N₂等离子体采用喷注面中心点火可在5kW 左右的功率完成酒精-空气和酒精-液氧-空气在高 室压燃烧室的点火和稳焰燃烧。最高燃烧室室压实 际接近5MPa时N₂等离子体点火器仍能稳定工作并 实现快速点火,连续点火30次左右,电极烧蚀并不明 显,在液体火箭发动机及其燃烧型加热器等地面试 验设备的重复可靠点火方面具有很好的应用前景。

致 谢:感谢国家自然科学基金和国家重点研发计划项目的资助。

参考文献

- [1] Starikovskaia S M. Plasma Assisted Ignition and Combustion [J]. Journal of Physics D-Applied Physics, 2006, 39: 265-299.
- [2] 洪延姬,席文雄,李 兰,等.等离子体辅助燃烧机 制及其在高速气流中的燃烧应用研究评述[J]. 推进 技术, 2018, 39(10): 2274-2288. (HONG Yan-ji, XI Wen-xiong, LI Lan, et al. Comments on Researches of Mechanism for Plasma Assisted Combustion and Applications in High Speed Flow-Field[J]. Journal of Propulsion Technology, 2018, 39(10): 2274-2288.)
- [3] 王 飞,韩先伟,张蒙正.低功率非冷却等离子体炬 试验研究[J].火箭推进,2016,42(1):33-36.
- [4] Ju Y, Ombrello T, Won S. Diagnostics for Combustion and Ignition Enhancement Using the Non-Equilibrium Plasma[D]. New Jersey: Princeton University, 2008.
- [5] Ombrello T, Won S, Ju Y, et al. Flame Propagation Enhancement by Plasma Excitation of Oxygen. Part I: Effects of O³[J]. Combustion and Flame, 2010, 157(10): 1906-1915.
- [6] 张 鹏,洪延姬,沈双晏,等.等离子体强化点火的 动力学分析[J].高电压技术,2014,40(7):2125-2132.
- [7] 赵子晨,何立明,张华磊,等.空气等离子体点火器的旋流器斜切角对点火器特性的影响[J].高电压技

术,2019,45(6):1921-1928.

- [8] 祁文涛,何立明,赵兵兵,等.空气等离子体射流点火器特性实验研究[J]. 推进技术, 2016, 37(11): 2107-2113. (QI Wen-tao, HE Li-ming, ZHAO Bingbing, et al. Analysis of the Dynamic Process of Air Plasma Jet[J]. Journal of Propulsion Technology, 2016, 37 (11): 2107-2113.)
- [9] 戴文峰,何立明,张华磊,等.阳极通道长度对等离子体射流点火器特性影响的实验研究[J].推进技术,2018,39(7):1568-1575.(DAI Wen-feng, HE Liming, ZHANG Hua-lei, et al. Experimental Investigation for Effects of Anode Channel Length on Characteristics of Plasma Jet Igniter[J]. Journal of Propulsion Technology, 2018, 39(7):1568-1575.)
- [10] 于锦禄,何立明,丁 未,等.等离子体点火器设计及其放电特性研究[J].南京航空航天大学学报,2016,48(3):396-401.
- [11] 韦宝禧,欧 东,闫明磊,等.超燃燃烧室等离子体 点火和火焰稳定性能[J].北京航空航天大学学报, 2012,38(12):1572-1576.
- [12] 钟文丽,席文雄,段立伟,等.超声速气流点火助燃用等离子体火炬的试验研究[J].推进技术,2015,36
 (10): 1528-1532. (ZHONG Wen-li, XI Wen-xiong, DUAN Li-wei, et al. Experimental Investigation on Plasma Torch for Supersonic Flowfield Ignition and Combustion [J]. Journal of Propulsion Technology, 2015, 36
 (10): 1528-1532.)
- [13] Whitmore S A, Inkley N R, Merkley D P. Development of a Power Efficient, Restart-Capable Arc Ignitor for Hybrid Rockets [C]. Cleveland: 50th AIAA/ASME/SAE/AS-EE Joint Propulsion Conference and Exhibit, 2014.
- [14] Nagata T, Torres J, Culbertson J, et al. Investigation of Helium Assisted Low Frequency Plasma for Liquid Oxygen and Hydrocarbon Ignition [C]. San Diego: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2011.
- [15] Yusupov D I, Kulikov Y M, Gadzhiev M K, et al. High-Pressure Ignition Plasma Torch for Aerospace Testing Facilities[J]. Journal of Physics: Conference Series, 2016, 774(1).
- [16] MF朱可夫,陈明周,邱励俭,等.电弧等离子体[M].北京:科学出版社,2016.
- [17] 王静鸽,李新忠,李贺贺,等.背景扣除和强度校正 对激光诱导等离子体光谱参数的影响[J].光谱学与 光谱分析,2018,38(1):276-280.
- [18] 王 战.大气压下空气中气流对介质阻挡放电的影响

[D]. 大连: 大连理工大学, 2008.

- [19] 屠 昕,陆胜勇,严建华,等.大气压直流氩等离子体光谱诊断研究[J].光谱学与光谱分析,2006,26
 (10):1785-1789.
- [20] Murphy A B, Arundelli C J. Transport Coefficients of Argon, Nitrogen, Oxygen, Argon-Nitrogen and Argon-Oxygen Plasmas[J]. Plasma Chemistry and Plasma Processing, 1994, 14(4): 451-490.
- [21] 吴贵清,葛 楠,杨 安,等.压力对双射流电弧等 离子体特性的影响[J].清华大学学报(自然科学版),

2014, 54(1): 68-72.

- [22] 李铭书. 污泥处理用热等离子体基本特性及污泥处理 产物特性研究[D]. 武汉:华中科技大学, 2018.
- [23] Griem H R. Plasma Spectroscopy [M]. New York: Mc-Graw-Hill Book Company, 1964.
- [24] 李清廉,李 庆,王振国. 氧气/醇类燃气发生器启动 过程试验研究[J]. 火箭推进, 2010, 36(1): 13-18.
- [25] 熊 剑,肖 虹,李小平,等.宽范围变流量空气/液 氧/酒精燃烧加热器试验[J].火箭推进,2020,46
 (3):56-61.

(编辑:张 贺)