高速来流发动机射流预冷及压气机湿压缩特性 一体化分析方法^{*}

安利平^{1,2}, 王 吴¹, 朱自环¹, 王掩刚¹

(1. 西北工业大学 动力与能源学院,陕西西安 710072;
 2. 中国航发四川燃气涡轮研究院,四川 成都 610500)

摘 要:为了研究高空高速来流条件下发动机射流预冷及压气机湿压缩特性,针对发动机进气道部 分和压气机部分的气液两相流动过程分别建立相应的计算模型,发展了一体化分析方法。对于进气道喷 水后的气液两相流动,采用基于微元段思想的气动效应-蒸发冷却修正两步法建立一维计算模型;对于 压气机湿压缩过程,采用基于CFD技术的欧拉-拉格朗日方法对气液两相流动进行建模。利用所建立的 一体化分析方法,考虑真实高空高速来流条件,同时保证发动机在喷水前后具有等换算转速调节规律, 对发动机射流预冷及压气机湿压缩特性进行分析。结果表明:射流预冷能够显著降低高马赫数来流下的 压气机进气温度,使得相同最高物理转速下压气机换算转速提高,使压气机具有更好的气动性能;若液 滴在进入压气机前蒸发完全,混入工质中的过量水蒸汽会降低压气机的无量钢转速,使得同换算转速下 压气机压比较不喷水时降低;小粒径液滴更快的蒸发作用有助于对高温气流的快速降温,当液滴粒径为 3μm和喷湿量为10%时,压气机进气温度较喷水前降低247.13K,同换算转速下物理转速仅为不喷水时 的76%。

关键词:射流预冷;跨声速压气机;气液两相流;湿压缩;数值模拟 中图分类号: V231.3 文献标识码: A 文章编号: 1001-4055 (2021) 03-0560-09 DOI: 10.13675/j.cnki. tjjs. 190667

Integrated Analysis Approach of Injection Precooling and Compressor Wet Compression Characteristics of Jet-Engine under High Speed Inflow Condition

AN Li-ping^{1,2}, WANG Hao¹, ZHU Zi-huan¹, WANG Yan-gang¹

(1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China;2. AECC Sichuan Gas Turbine Establishment, Chengdu 610500, China)

Abstract: In order to study the characteristics of jet-engine injection precooling and compressor wet compression under high altitude and high speed inflow condition, the present paper establishs the corresponding calculation models, respectively, for the gas-liquid two phase flow processes in the inlet duct and the compressor

* 收稿日期: 2019-09-29;修订日期: 2020-05-13。

基金项目:国家自然科学基金(51906205);陕西省自然科学基础研究计划(2019JQ-620);中央高校基本科研业务费 (G2018KY0302)。

作者简介: 安利平,博士生,研究员,研究领域为航空发动机压气机设计。E-mail: 10848992@qq.com

引用格式: 安利平,王 吴,朱自环,等.高速来流发动机射流预冷及压气机湿压缩特性一体化分析方法[J]. 推进技术,
 2021,42(3):560-568. (AN Li-ping, WANG Hao, ZHU Zi-huan, et al. Integrated Analysis Approach of Injection Precooling and Compressor Wet Compression Characteristics of Jet-Engine under High Speed Inflow Condition [J].
 Journal of Propulsion Technology, 2021, 42(3):560-568.)

通讯作者: 王 昊, 博士, 讲师, 研究领域为叶轮机械气动热力学。E-mail: wanghao@nwpu.edu.cn

section, and develops an integrated analysis approach. For the gas-liquid two-phase flow after the injection in the inlet duct, a one-dimensional model is established by using a two-step approach with aerodynamic effect evaporative correction based on the idea of infinitesimal method. For the compressor wet compression process, Euler-Lagrange method based on CFD technology is adopted to model the gas-liquid two-phase flow. Considering the real high altitude and high speed inflow conditions, the characteristics of injection precooling and wet compression of the engine are analyzed by the established method, meanwhile the equal corrected speed regulation of the engine before and after the injection is guaranteed. The results show that the injection precooling can significantly reduce the inlet temperature of the compressor under high Mach number inflow condition, so that the corrected speed of the compressor can be increased under the same maximum physical rotation speed which makes the compressor achieve better performance. If the liquid droplets evaporate completely before entering the compressor, the extra water vapor mixed into the working medium will lower the dimensionless speed of the compressor, so that the compressor pressure rise is lower than that of the non-water injection case at the same corrected speed. The faster evaporation of small-size droplets can help to rapidly cool the high-temperature gas flow. When the particle size of the droplets is 3µm and the water to air ratio is 10%, the air inlet temperature of the compressor is reduced by 247.13K, and the physical rotation speed is only 76% of that of the non-water injection case at the same corrected speed.

Key words: Injection precooling; Transonic compressor; Gas-liquid two-phase flow; Wet compression; Numerical simulation

1 引 言

对于高超声速推进技术的发展,目前涡轮基组 合循环动力装置(Turbine-based combined cycle, TBCC)有着较好的应用前景^[1],其由涡轮发动机和冲 压发动机组合而成。涡轮发动机可以在静止条件下 启动,但极限速度低,负责在低速时提供推力;而冲 压发动机必须在高速下才能启动,极限速度很高,主 要负责在高速时提供推力。然而,TBCC技术也面临 着一系列的技术难题,目前比较突出的问题是高马 赫数下涡轮发动机进气温度过高,导致性能衰退。 通常情况下,涡轮发动机的最大工作马赫数需要达 到3以上,才能保证冲压发动机正常启动,此时涡轮 发动机压气机进口气流经过进气道减速后,温度可 达到600K以上。如此高的进气温度会致压气机进口气 流进行预冷。

在目前的TBCC预冷技术研究项目中,比较有代 表性的是20世纪50年代美国提出的射流预冷却发 动机(MIPCC-TBCC)技术和1986年日本提出的吸气 式涡轮冲压膨胀循环发动机(ATREX)技术,这两种 方案均采用了进气预冷技术。美国在MIPCC-TBCC 项目中测试多种冷却介质后,发现水是比较理想的 冷却介质^[3],并通过喷水预冷成功使F100发动机在 模拟进气条件为马赫数3.47、高度24.6km的工况下 工作^[4],证明了喷水预冷确实可以提高涡轮发动机最高工作马赫数。事实上,由于水的冷却效果比较好且成本低,容易制备,因此大部分涡轮发动机预冷均采用喷水的方案。但是,在多个TBCC实验中均发现了一个问题,即由于来流速度过高,喷入的水来不及完全蒸发就进入了涡轮发动机的压气机,由于水的蒸发冷却效应,压气机性能与来流为相同流量、温度下的无水空气时产生了明显的不同,进而导致整个涡轮发动机性能发生变化。如果不考虑水滴在压缩过程中蒸发冷却的影响,直接按照来流为温度、流量与射流冷却后含水气流相同的干空气进行压气机性能计算,得到的结果与实际相差较大。事实上,这种压气机中来流含水的压缩过程被称为湿压缩。

早期的TBCC项目主要目的是探索这种组合发动机的可实现性,对于预冷水滴进入压气机后引起的压气机性能变化并未做过多研究。随着TBCC技术的日益成熟,设计一款实用的TBCC发动机已经成为可能,因此设计人员需要在设计阶段尽量快速、准确地获知压气机在湿压缩状态下的性能。为了满足这个需求,有必要发展一种压气机湿压缩特性快速预测手段。调研表明,目前关于压气机湿压缩特性快速预测手段。调研表明,目前关于压气机湿压缩性能的研究主要集中在燃气轮机行业,其部分成果可供借鉴。湿压缩作为一种提高燃气轮机性能的有效手段,早在20世纪40年代即得到了相关行业和研究人员的广泛关注。1947年,Kleinschmidt^[5]首次提出湿

压缩的概念:"燃气轮机的湿压缩是指在压气机入口 或在级间向被压缩气体喷入冷却液体(一般是水), 喷入的液滴与气体直接接触,相互掺混进行热量和 质量传递,由于液体蒸发要吸收大量的热,所以气体 在压缩的同时又被冷却,结果使压缩过程更接近于 等温压缩,使压气机出口气体温度低于绝热压缩时 的温度,压气机耗功低于绝热压缩",由此可见,湿压 缩过程中压气机产生单位压比所需的耗功降低,因 此燃气轮机整机的输出功提高。此外,由于湿压缩 技术成本低,实现难度小,且可以在现有的燃气轮机 上改装应用,因而具有广阔的应用前景。目前,湿压 缩技术在燃气轮机行业已经进入工程实用阶段,上 海电气[6]、美国唐纳森[7]等多家国内外公司已经将其 应用到了燃气轮机的改进项目中。1998年,美国GE 公司将级间喷雾技术应用于LM6000燃机的高低压 压气机之间,成功地将LM6000的输出功率提高。在 标准大气条件下,输出功率提高约12%,而当大气温 度为32°C时,输出功率提高>30%。同年,罗罗公司 率先运用数值模拟对压气机喷水技术进行全面的研 究^[8]。2000年,阿尔斯通公司开始研制喷水系统并首 先将其应用于瑞士Birr实验机组GT26与GT8C2上, 2003年在 GT24 燃机上进行喷水实验,得出喷雾量 1.2%下燃机的输出功率提高约5.6% [9-10]。

国内的哈尔滨工程大学也成立了专门的实验室 研究湿压缩技术。李淑英等^[11]着重分析了喷水位置 对湿压缩性能的影响,通过理论分析结合实验结果 的方式对压气机各性能参数进行分析和总结,并讨 论燃气轮机中喷水的限制因素。孙兰昕^[12]研究了燃 气轮机湿压缩过程中水滴的破碎和水滴/叶片撞击过 程,分析了水滴撞击叶片后可能发生的形态,提出了 压气机湿压缩水滴撞击破碎模型。罗铭聪等^[13-14]在 喷水研究中比较了进口喷水与叶顶喷水对单列跨声 速压气机失速边界的影响,研究中指出叶顶喷水与 进口喷水均可以抑制压气机失速现象,叶顶喷水主 要针对叶片顶部泄漏涡的控制;进口喷水在控制泄 漏涡的同时还可发挥出液滴在整个流场中的蒸发冷 却效果,使压气机的性能有所提高。 本文考虑发动机在高空高速下的实际来流条件,开发了针对发动机射流预冷及压气机湿压缩特性的一体化分析方法。分别针对喷水后进气道部分 及压气机部分的典型流动特征,采取不同的建模方式,实现对进气道射流预冷特性及压气机湿压缩特 性的耦合快速预测。在此基础上,对不同喷水方案 的效果进行分析,所得结果为射流预冷技术的发展 和应用提供理论参考和技术支撑。

2 研究对象及数值方法

2.1 超声速进气道/压气机耦合分析模型

为了研究真实高空高速来流下涡轮发动机射流 预冷特性,建立发动机进气道/压气机耦合分析模型, 如图1所示。该模型分为超声速进气道部分和压气 机部分,截面m将两个部分连接起来,即为进气道计 算域的出口,也作为压气机计算域的进口。由进气 道部分计算得到的出口混合气体物性参数在此截面 上进行数据传递,以给定压气机的进口气体物性条 件。对于进气道部分喷水后的液滴蒸发冷却过程, 拟采用一维计算方案对该过程进行建模。为保证一 维方法在该计算域的适用性,截面m上的气动参数分 布应近似均匀,因此需保证截面m的位置到压气机进 口至少有 3~5倍的压气机动叶弦长的距离。

超声速进气道为内压式,采用倒置的拉瓦尔喷 管的形式,包括收缩段、喉部及扩张段。不考虑进气 道的起动过程,超声速进气道的典型流动特征为:来 流超声的气流进入进气道后,在收缩段中进行连续 的微弱压缩,气流减速增压,到达喉部时马赫数一般 >1,然后在扩张段内短暂加速再经过一道正激波,变 为亚声速气流,到出口截面(即压气机进口)得到所 需要的气流马赫数。根据射流预冷技术的实际应用 情况^[15],将喷水位置设置于进气道正激波后的亚声 速区域,此时气体温度升高、气流速度下降,利于发 挥液滴的蒸发冷却作用。

2.2 进气道射流预冷特性计算方法

进气道流动属于变截面管流问题,在液滴喷射 比较均匀的情况下,进气道部分的气液两相流可近

Fig. 1 Coupling analysis model of ultrasonic inlet and compressor

似为一维流动。因此,基于微元段思想结合气动效 应一蒸发冷却修正两步法建立进气道射流预冷特性 的一维计算模型。该进气道射流预冷特性一维计算 方法的详细介绍及校验在文献[16]中给出,这里对 该方法原理及验证进行简要介绍。在发动机进气道 喷入液滴之后,流动过程中同时发生着由于管道截 面积变化引起的气动参数改变(即气动效应)和两相 间传热传质导致的气体状态和混合湿空气成分改变 (即蒸发冷却效应)。在微元段思想的基础上,可将 管道内气液两相流动的气动效应和两相间传热传质 效应分离因素考虑。将喷水位置至压气机进口的管 道划分为若干个微元段,在每个微元段内对气液两 相流动的计算分两步进行:(1)不考虑液相的蒸发, 仅对该微元段内截面面积变化导致的气动参数变化 进行计算;(2)以微元段出口气体状态作为液滴蒸发 的参考环境,结合蒸发模型,对液滴蒸发的传热传质 过程进行计算,以修正蒸发对气体温度的影响,以及 含液态水湿空气物性的改变。然后,以考虑蒸发过 程的气动参数作为下一个微元段的进口条件,如此 重复计算,直至管道出口。最后得到进气道出口即 压气机进口的含液态水湿空气的气动参数及混合物 性参数。另外,由于此时管道中存在一道正激波,喷 水会对正激波的位置产生影响,因此还需要根据计 算背压相对给定背压的偏差,利用迭代法对激波波 前马赫数进行修正,直至计算得到的出口背压与给 定背压之间的残差小于一定量级,则认为结果收敛。 利用文献[17]提供的公开数据对该方法预测液滴蒸 发过程的准确性进行验证,如图2所示。该数据显 示,当初始条件为空气温度35℃、相对湿度20%和液 滴粒径20μm,在不同喷水量的情况下,液滴粒径和 相对湿度的变化趋势。其中,R为临界喷水比(Critical water injection ratio),即为液滴完全蒸发时使湿空 气刚好达到饱和的喷水比。图中实线为本程序预测 结果,散点为文献中的数据。可以看出,在不同的喷 水量下,本程序预测结果与文献数据都吻合较好,证 明了该方法的可靠性。

2.3 压气机湿压缩特性计算方法及校验

在利用上述计算方法获得进气道出口混合气体物性的基础上,在压气机进口给定该物性条件,利用CFD方法对压气机内部气液两相流动过程进行计算。同时,在喷水前后,根据压气机进口气体温度的变化,按照等换算转速的方式对压气机实际物理转速进行调节。本文选取NASA Stage 35 作为研究对象,该跨声速转子设计转速 n_o为 17188.7r/min,动叶叶片

Fig. 2 Validation of the 1D model for gas-liquid flow after the injection

数 36,静叶叶片数 46,动叶叶顶间隙 0.408mm,约为 5% 动叶叶片径向高度;设计总压比 1.82,设计流量 20.188kg/s,效率为 0.828,其它几何参数和设计参数 见表 1。

Table 1 Main design parameters of Stage 35

Parameter	Value
Rotor/stator blade number	36/46
Design rotate speed/(r/min)	17188.7
Design mass flow/(kg/s)	20.188
Hub to tip ratio	0.7
Rotor aspect ratio	1.19
Stator aspect ratio	1.26
Tip speed/(m/s)	454.456
Tip clearance/mm	0.408
Total pressure ratio	1.82
Total temperature ratio	1.245
Isentropic efficiency	0.828

采用计算流体力学求解程序 ANSYS CFX,结合 欧拉-拉格朗日方法对压气机内部的气液两相流动 过程进行计算。将压气机内部的气体视为连续相, 液滴颗粒视为离散相,利用基于时间推进的有限体 积法对连续相控制方程进行离散,利用拉格朗日法 追踪液滴颗粒的运动行为,离散相与连续相之间的 双向耦合通过RANS方程的源相实现。湍流模型采 用的 $k-\varepsilon$ 模型,并使用Scalable壁面函数对近壁区域 流动进行建模。同时本文在两相流数值模拟中考虑 液滴撞击壁面破碎和气动破碎,气动破碎模型采用 CAB模型。使用结构化网格生成软件 AutoGrid 5 对 压气机流体域进行网格划分,如图3所示。采用多块 网格分区技术,叶片通道使用04H型网格拓扑结构, 叶片周围为O型网格。动叶网格节点分布为65×89× 169(周向×径向×轴向),动叶网格总数1083168;动叶 网格节点分布为65×65×169,静叶网格总数1083168。 为了更加准确地捕捉液滴撞击叶片等过程以及液滴 对叶顶区域流动的影响,在动叶间隙区域和叶片流 域等关键位置进行适当的加密,动叶叶顶间隙沿径 向分布17个网格节点。计算域入口设置在转子前约 3倍动叶弦长位置处,出口设置在静子后约5倍静叶 弦长位置处,同时叶片通道的周期性交界面网格节 点均一一对应。数值模拟边界条件为进口给定总 温、总压以及来流方向(轴向进气);出口给定平均 静压。

Fig. 3 Computing grid of Stage 35

为验证数值模拟求解压气机内部流场的准确 性,对标准大气进口条件(SCM, Standard condition modeling)下 Stage 35 100%设计转速、90%设计转速 和70%设计转速的干压缩特性进行计算,并将数值 模拟结果与实验结果进行对比,如图4所示。从图中 可以看出,虽然在两个高转速工况,预测压比略低于 实验值,但整体上三条不同转速线的数值模拟结果 在总压比、效率和总温比均与实验结果吻合较好,证 明了该数值模拟方法的可行性。

3 结果与讨论

3.1 射流预冷特性分析及喷湿方案确定

高空高马赫数来流条件参考美国 DARPA^[15]项目 针对 MIPCC 技术研发的方案,选取海拔 H=24km、马 赫数 Ma=3 作为进气道进口来流条件,进气道出口马

Fig. 4 Compressor characteristics in standard atmospheric conditions

赫数为 Stage 35 设计进口马赫数 Ma=0.512。采用进 气道射流预冷一维计算方法对不同喷湿方案下进气 道出口参数进行研究,以便选取具有代表性的喷湿 方案对压气机进行数值模拟。给定液滴初始温度 288K,进口初始相对湿度为0,选取液滴初始粒径分 别为1,3,5,10,20,30μm,喷入的液滴占压气机设计 流量的质量分数为0.5%,1%,3%,5%,10%的不同喷 湿方案,计算进气道出口工质物性参数。计算获得 的进气道出口温度、出口液滴粒径以及出口相对湿 度在不同喷湿条件下的变化关系如图5所示,从图中 可以看出,当液滴粒径在3μm以下,喷湿量在5%以 下时,液滴在进气道出口前完全蒸发;而其它喷湿方 案下,在进气道出口还有未蒸发的液滴剩余,将进入

Fig. 5 Flow parameters at outlet of inlet duct under different water injection conditions

压气机参与压缩过程。另外,从图中还可以看出,喷 射的液滴粒径越小,喷湿量越大,液滴蒸发越快,达 到进气道出口时气流温度越低。当喷入液滴粒径 1µm,喷湿量达到10%时,可使进气道出口温度降低 268.15K,降温效果更明显。而液滴粒径过大时,无法 充分发挥预冷作用,从图5中可以看出,喷射粒径为 20μm和30μm液滴时,即使增大喷水量到10%,出口 气流温度降低只有31.21K和15.03K。另外,当液滴 粒径过小时,粒径对喷湿效果影响变弱,可以看出, 1μm的液滴与3μm的液滴降温速度相当,从经济性 的角度看,喷射的液滴粒径没必要太小。可见,选择 合适的液滴粒径和喷湿量是优化射流预冷技术、提 升压气机性能效果的关键因素。

一般情况下,由于水的气化潜热远远大于空气 的定压比热,是空气比热容的2000倍,因此在风扇/ 压气机进口喷水以降低进口温度只需少量的水。通 常压气机射流预冷中喷湿量不会高于10%。另外,液 滴粒径过大时,液滴在流动中形成的阻力增大,同时 液滴碰撞叶片导致的叶片制动效应加剧,一般用于 改善压气机性能的液滴粒径不宜超过10µm。针对 粒径和喷湿量对压气机性能的影响,本文采用设置 对照选取液滴粒径为3um、喷湿量为3%,液滴粒径为 3μm、喷湿量为10%,液滴粒径为5μm、喷湿量为3% 三个喷湿方案,对压气机射流预冷进行数值模拟研 究。同时,对压气机湿压缩特性的研究,考虑发动机 实际运行中的调节规律,喷水前后按照等换算转速 的方式对压气机转速进行调节,即需要根据压气机 进口气体温度的变化,获得其相应的物理转速。这 三种喷湿方案下进气道出口工质相关参数以及相应 的压气机物理转速如表2所示。

3.2 压气机湿压缩特性

为探寻压气机不同射流预冷方案下可通用的特 性规律,本文保持压气机换算转速不变,以表2所示 的喷湿方案(Case 1~3)下的进气道出口工质参数作 为压气机进口条件,研究射流预冷条件下压气机性 能变化规律。利用前文所述的CFD技术结合欧拉-拉格朗日方法对压气机内部气液两相流动进行求 解,获得压气机湿压缩特性。高空高马赫数下压气 机射流预冷数值模拟得到的特性曲线如图6所示。 在等换算转速下,Case 1~3 三个喷湿方案下,压气机 物理转速分别为干压缩情况的91.1%,91.8%和76%。

 Table 2
 Outlet parameters of air inlet and corresponding physical rotation speed of the compressor

Case	Injection parameter		Parameter at the inlet duct outlet				n/n_o
	Droplet diameter/µm	Injection rate/%	Static temperature/K	Relative humidity/%	Droplet diameter/µm	Total temperature/K	(under the same corrected speed)
0	0	0	585.15	0.000	0.00	610.5	1.46
1	3	3	482.02	0.229	0.00	507.8	1.33
2	5	3	493.03	15.95	2.59	517.5	1.34
3	3	10	338.02	47.35	1.46	353.8	1.11

Fig. 6 Compressor characteristics under water injection at high altitude and high Mach number

可以看出,压气机射流预冷能够降低压气机进口总 温,使得压气机在高空高速来流条件下能够以较低 的物理转速运行并依然保持较为良好的性能。同 理,若保证喷水前后物理转速不变,喷水后压气机换 算转速提高,使压气机具有更好的气动性能。

另外可以看出,尽管混入不同比重的水和水蒸 汽,压气机特性线只是发生了平移,变化趋势并没有 发生显著变化。对于Case 1(3μm,3%)喷湿方案下, 压气机进口工质由干空气和水蒸汽组成,此时压气 机进口不含有液态水,在此条件下,压气机的流量和 压比均有所下降,而最高效率却几乎保持不变。与 干压缩情况相比,堵塞点的换算流量下降约为干压 缩全工况流量范围的12.53%,最高总压比下降约为 干压缩最高总压比的 1.4%。在 Case 2(5µm, 3%)、 Case 3(3µm,10%)喷湿方案下,压气机进口工质由干 空气、水蒸汽和液滴组成,在此条件下压气机的流 量、压比和效率均有所上升,上升幅度与液滴粒径和 喷湿量有关。Case 2(5µm,3%)喷湿方案下,与干压 缩情况相比,堵塞点换算流量增加约为干压缩全工 况流量范围的7.15%,最高总压比上升约为干压缩最 高总压比的 0.7%; Case 3(3µm, 10%) 喷湿方案下, 与 干压缩情况相比,堵塞点换算流量增加约为干压缩 全工况流量范围的24.22%,最高总压比上升约为干 压缩最高总压比的4.2%。从图6(c)中可以看出,无 论进口是否含有液滴,射流预冷均能降低压气机进 出口总温之比。在设计点工况, Case 1(3µm, 3%)喷 湿方案下压气机进口未含有液滴,设计点总温比降 低约为干压缩设计点总温比的 1.4%; Case 2(5µm, 3%)和Case 3(3µm, 10%)喷湿方案下压气机进口含 有液滴,设计点总温比下降量分别为干压缩设计点 总温比的1.6%和5%。可见进口含有液滴参与压缩 过程将有利于降低压气机总温升,且在压气机内部 蒸发的液滴质量越多,压气机总温比下降量越大。

从上述分析中可以发现,当流经压气机的工质 中含有较多水蒸汽时可能对压气机性能带来负面影 响。空气与水蒸汽的混合物可视为理想气体,水蒸 汽混入空气进入压气机会改变压缩过程的热力学特 性。由水蒸汽和空气组成的混合气体的定压比热容 c_p 、气体常数R和热容比y随水蒸汽质量分数变化关 系如图7所示。可见,混合气体的定压比热容 c_p 和气 体常数R随水蒸汽质量分数增大而升高,而混合气体 热容比y随水蒸汽质量分数增大而升高,而混合气体 热容比y随水蒸汽质量分数增大而升高,而混合气体 热容比y随水蒸汽质量分数增大而减小。对压气机 而言,当换算转速为定值时,由于气体常数R增长幅 度较热容比y减小幅度大,水蒸汽的存在使无量纲转 速 n_{and}降低,使得压气机性能相比干压缩情况有所下 降。虽然混入水蒸汽使得压气机部件性能相比于相

Fig. 7 Properties of wet gas mixture varying with water vapor fraction

同换算转速下的性能有所下降,但射流预冷作用使 得压气机在保持换算转速不变时,其物理转速大幅 度下降。

$$n_{\rm nod} = \frac{n}{\sqrt{\gamma R T^*}} \tag{1}$$

式中n为物理转速,T*为进口总温。

当压气机进口含有液态水时,液滴在压气机压 缩过程中,通过蒸发吸热作用不断降低压气机气流 的温度,相当于提高压气机换算转速,从而提升压气 机性能。发动机射流预冷和湿压缩过程中,预冷段 内的预冷却作用及湿压缩过程中的间冷作用共同决 定射流预冷湿压缩特性。从计算结果来看,射流预 冷中压气机进口含有液态水时,压气机性能比等换 算转速干压缩有所上升。可见,液滴在压气机内部 起到的间冷作用对压气机性能增益幅度比压气机进 口含有的水蒸汽对压气机性能减损幅度大。

为定量分析不同喷湿方案下压气机湿压缩过程 蒸发冷却效应,沿着压气机不同轴向位置取垂直于 轴向的截面,截面平均静温值随轴向位置变化关系 如图8所示。从图中可以发现,干压缩情况下,受动 叶前缘激波影响,压气机在叶片前缘位置处气流温 度快速上升,射流预冷后压气机内部动叶位置处气 流温度上升速度比干压缩情况有所降低。可见,射 流预冷对压气机动叶前缘处的激波强度产生了影 响,降低了压气机内部气流温度,并抑制了压气机内 部气流温度上升幅度。Case 1(3µm, 3%)喷水方案 下,与干压缩相比,液滴在进入压气机进口前已经完 全蒸发,进口气流温度相比干压缩情况降低102.8K, 压气机内部气流温度上升幅度仅是干压缩情况的 81.35%; Case 2(5µm, 3%) 喷湿方案下, 由于液滴在进 口前未完全蒸发,进口温度比Case 1(3µm,3%)喷湿 方案时高,随着液滴在动叶前缘处完全蒸发,气温逐

Fig. 8 Average static temperature of the compressor varies with axial position

渐降低,最终在动叶前缘处气流温度趋于一致。 Case 3(3μm,10%)喷湿方案下,液滴在静叶下游才完 全蒸发,此时进口温度相比干压缩情况降低 247.13K,且随着液滴在压缩过程中不断蒸发吸热,对 压气机内部气流温度上升抑制程度加大,此喷湿方 案下气流温度上升幅度仅是干压缩情况的42.58%。

4 结 论

通过本文研究,得到主要结论如下:

(1)射流预冷借助喷入液滴的蒸发冷却作用,能 够显著降低高马赫数来流下的压气机进气温度,使 得相同最高物理转速下压气机换算转速提高,使压 气机具有更好的气动性能。

(2)对于射流预冷技术来讲,预冷却降温效果和 压气机湿压缩特性都受到喷射液滴粒径和喷湿量的 影响。喷射的液滴粒径越小,喷湿量越大,液滴蒸发 越快,达到进气道出口时气流温度越低,射流预冷效 果越好。当液滴粒径为 3μm 和喷湿量为 10% 时,压 气机进气温度较喷水前降低 247.13K,同换算转速下 物理转速仅为不喷水时的 76%;但是,当液滴粒径过 小时(<3μm),粒径对喷湿效果影响变弱,从经济性的 角度看,喷射的液滴粒径没必要太小。

(3)若液滴在进入压气机前蒸发完全,混入工质 中的过量水蒸汽会降低压气机的无量纲转速,使得 同换算转速下压气机压比较不喷水时降低。因此, 对于射流预冷技术的应用,适当提高喷水量,使部分 未蒸发的液滴进入压气机,继续蒸发参与压缩过程, 液滴在压气机内部的间冷作用能够进一步提高压气 机压比,提升发动机性能。

致 谢:感谢国家自然科学基金、陕西省自然科学基础 研究计划和中央高校基本科研业务费的资助。

参考文献

- [1] 刘赵云.国外TBCC组合循环发动机方案及发展浅析[J].飞航导弹,2013,(7):94-98.
- [2] 杨天宇,张彦军,芮长胜.高速涡轮发动机技术发展 浅析[J]. 燃气涡轮试验与研究, 2013, (6): 26-30.
- [3] 童传琛,娄德仓.预冷技术在涡轮冲压组合动力中的 应用[J].燃气涡轮试验与研究,2013,(6):21-25.
- [4] 芮长胜,张 超,越冬峰.射流预冷涡轮发动机技术 研究及发展[J].航空科学技术,2015,(10):53-59.
- [5] Kleinschmidt R V. Value of Wet Compression in Gasturbine Cycles [J]. Mechanical Engineering, 1947, 69: 115-116.

- [6] 吉荣生.西门子 V94. 3A 型燃气轮机技术升级改造介 绍[J]. 燃气轮机技术, 2011, 24(4): 66-69.
- [7] 朱安君.提升燃气轮机功率的技术措施[J].科技创新 与应用,2013,(25):109-109.
- [8] Walsh P P. Inlet Fog Boost Technology Acquisition Programme[C]. Helsinki: Power-Gen Europe, 2000.
- [9] Jolly S, Cloyd S. Performance Enhancement of GT24 with Wet Compression[C]. Las Vegas: Power-Gen International, 2003.
- [10] Hoffman J, McKay T. Customer Benefits of Air Inlet Cooling and ALFog Fogging and High Fogging[C]. Tulsa Oklahoma: Power-Gen International, 2004.
- [11] 李淑英,戴景民.湿压缩燃气轮机热力循环的特点与 机理分析[J].燃气轮机技术,2001,14(4):20-22.
- [12] 孙兰昕. 燃气轮机湿压缩性能与水滴运动研究[D]. 哈尔滨:哈尔滨工程大学, 2012.

- [13] Luo M, Zheng Q, Sun L, et al. On the Stability of Transonic Compressor with Wet Compression and Blade Tip Water Injection[R]. ASME GT 2012-69133.
- [14] Luo M, Zheng Q, Sun L, et al. The Effects of Wet Compression and Blade Tip Water Injection on The Stability of a Transonic Compressor Rotor [J]. ASME Journal of Engineering for Gas Turbines and Power, 2012, 134(9).
- [15] Preston C, Vladimir B. Mass Injection and Precompressor Cooling Engines Analyses [R]. AIAA 2002-4172.
- [16] 王 昊,安利平,王掩刚,等.高速来流发动机进气 道射流预冷水滴蒸发过程数值研究[C].昆明:中国 航天第三专业信息网第四届空天动力联合会议,2019.
- [17] Kim K H, Ko H J, Kim K, et al. Analysis of Water Droplet Evaporation in a Gas Turbine Inlet Fogging Process [J]. Applied Thermal Engineering, 2012, 33-34 (1): 62-69.

(编辑:朱立影)