典型管路 RP-3 航空煤油热氧化结焦特性试验研究*

杨 治,张净玉,姬鹏飞,骆 东,何小民

(南京航空航天大学 能源与动力学院, 江苏南京 210016)

摘 要:为了研究国产RP-3航空煤油在复杂油路内的热氧化结焦特性,结合航空发动机燃烧室燃 油喷嘴内部典型油路结构特点,针对直管、螺旋管和L形弯管三种结构油路,基于恒定环境温度的试验 方法开展氧化结焦试验研究。研究结果表明:直管的沿程结焦量呈现先增大后减小的形式,其峰值出现 在直管的中后部;L形弯管的沿程结焦量存在较大幅度的波动,结焦量在试验件弯曲段整体保持较高的 水平,结焦峰值位置相较直管提前出现;螺旋管的沿程结焦量分布表现为明显的双峰值形式。三种油路 中,螺旋管的单位面积结焦量最大,在燃油进口速度为2m/s时,其值约是L形弯管的3.46倍,直管的单 位面积结焦量最小。

关键词: 航空发动机; RP-3航空煤油; 燃油喷嘴; 热氧化结焦; 典型管路 中图分类号: V312 文献标识码: A 文章编号: 1001-4055 (2020) 10-2374-08 DOI: 10.13675/j.cnki. tjjs. 190429

Experimental Study on Autoxidation Coking Characteristics of Aviation Kerosene RP-3 in Typical Pipeline

YANG Zhi, ZHANG Jin-yu, JI Peng-fei, LUO Dong, HE Xiao-min

(College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract: In order to study the thermal autoxidation coke characteristics of domestic RP-3 aviation kerosene in complex pipeline, this paper combined characteristics of typical pipeline inside the nozzle of aero-engine combustor, and a way of constant ambient temperature was used to test the thermal autoxidation coke characteristics of straight pipe, helix pipe and L-shaped pipe. The results show that amount of coke along straight pipe presents a trend of increasing first and then decreasing, and the peak of amount of coke appears in the middle and rear part of the test pipe. There is a large fluctuation in the amount of coke along the L-shaped pipe, and it maintains at a high level in the bending region. The distribution of amount of coke along helix pipe exhibits a double peak form. Comparing three structures, the helix pipe has the largest amount of coke per unit area . When the fuel inlet flow rate is 2m/s, it is about 3.46 times that of L-shaped pipe, and straight pipe has the smallest amount of coke per unit area.

Key words: Aero-engine; RP-3 kerosene; Fuel nozzle; Autoxidation coke; Typical pipeline

1 引 言

温度也不断升高,供油系统受到高温气流的加热日 益严重。燃烧室内的供油系统主要指喷油杆和喷嘴 部分,喷油杆油路主要受到压气机出口的高温气流

作者简介:杨 治,硕士生,研究领域为碳氢燃料氧化结焦。E-mail: yangzhinuaa@163.com

引用格式:杨 治,张净玉,姬鹏飞,等.典型管路RP-3航空煤油热氧化结焦特性试验研究[J].推进技术,2020,41(10):2374-2381. (YANG Zhi, ZHANG Jin-yu, JI Peng-fei, et al. Experimental Study on Autoxidation Coking Characteristics of Aviation Kerosene RP-3 in Typical Pipeline[J]. Journal of Propulsion Technology, 2020, 41(10):2374-2381.)

随着航空发动机技术的不断发展,燃烧室进口

^{*} 收稿日期: 2019-06-21; 修订日期: 2019-08-25。

通讯作者:张净玉,博士,副教授,研究领域为航空发动机高温冷却技术。E-mail: zjyhxm@nuaa.edu.cn

的对流加热,而喷嘴头部处于火焰筒内部,除了受到 热空气的对流加热之外,还受到火焰筒内高温燃气 的热辐射。当油温升高到一定温度时,燃油发生热 氧化结焦反应^[1],生成的焦体会沉积在油路表面,堵 塞流道,影响燃油雾化特性,干扰发动机正常 工作^[2-3]。

目前,国内外众多专家学者对煤油结焦机理开 展了大量的研究工作,研究显示航空煤油结焦是一 系列复杂的物理化学过程。Edwards等^[4]研究了JP-8 航空煤油的结焦沉积特性。结果表明:JP-8煤油在 油温为423K时会引发热氧化结焦反应,在油温进一 步升高到723K时热裂解结焦反应开始发生。结合目 前航空发动机发展状况,供油系统正处于热氧化结 焦反应的范畴。TeVelde等^[5]在恒定热流条件下针对 多种燃料开展了壁温对结焦特性影响的试验。研究 表明:结焦峰值出现在壁温650K时,在到达峰值之前 结焦量随着壁温的升高而增加,峰值之后则随着壁 温迅速减少。同样是针对不同种类煤油燃料,研究 壁温对结焦量的影响, Chin 等^[6-7]的试验方法为恒定 壁温。研究表明:壁温对结焦量有显著影响,随着壁 温的升高,结焦量增加。裴鑫岩[8]开展了航空煤油 RP-3在直管、S管和螺旋管三种结构下的氧化结焦 特性试验。研究表明:相比于直管,流体流经螺旋管 和S管所产生的二次流和螺旋作用,对结焦和换热影 响显著,温度梯度的变化是产生结焦沉积的重要因 素之一。骆东^[9]在恒环境温度下对国产 RP-3 航空煤 油开展了热氧化结焦特性试验研究,试验件为不锈 钢直管。研究表明:RP-3航空煤油的结焦量与试验 时长呈非线性关系;进一步增加试验时间,结焦速率 开始增大。

国外针对航空煤油氧化结焦机理的研究开展了 较多的工作,其主要针对的是国外广泛使用的JP系 列或者Jet系列燃油^[10]。国内对煤油氧化结焦机理的 研究,起步时间相对较晚,研究对象主要为国产 RP-3 航空煤油;同时已有研究多针对直管油路,对于结构 复杂的油路研究较少;而目前航空发动机燃油喷嘴 内部流道结构呈现更为复杂的趋势,因此还需进一 步研究复杂油路结构内国产 RP-3 航空煤油的热氧 化结焦特性,为燃油喷嘴热防护方案的设计提供理 论支持。

本文基于国内广泛使用的 RP-3 航空煤油,采用 恒定环境温度的试验方法,开展了航空发动机燃油 喷嘴内部三种典型油路结构的热氧化结焦特性试验 研究。为燃油喷嘴热防护方案的设计提供理论支持。

2 试验方法

2.1 试验系统

试验系统由供油系统、预热系统、加热系统、测 试系统、冷却系统五个部分组成,见图1。燃油经高 压齿轮泵加压,流经过滤器(10μm),送至预热段。燃 油在预热段加热到指定工况进口温度*T*_{in},然后进入 到试验件,试验件安装在管式加热炉(6.3kW)内,加 热炉的环境温度*T*_s保持恒定,温控精度为±1K。最 后,燃油进入沉浸式热交换器冷却至常温后回收。

Fuel supply tank; 2) Check valve; 3) Filter; 4) High pressure gear pump;
 Valve 1; 6) Valve 2; 7) DA system; 8) Chiller; 9) Filter; 10) Valve 3;
 11) Rotameter; 12) Fuel recycled tank.

Fig. 1 Schematic of experimental system

预热段为直径 Φ=3mm、壁厚 0.9mm的不锈钢圆 管,采用等热流密度法加热,保证燃油进口温度达到 指定工况。试验件使用管式加热炉控制环境温度, 有效试验段长 1000mm(见图 2)。采用JK-XU多路温 度巡检仪配合 K型热电偶测量并记录试验件壁温,管 壁热电偶焊接方式见图 3。采用T型铠装热电偶测量 加热段进出口以及换热器出口燃油温度。

2.2 油焦测量方法

测量结焦量的方法主要有石英晶体微量天平在 线称重法^[11]、烧炭法^[12]、和称重法^[13-14]等。

Fig. 3 Schematic of thermocouple laying

本试验采用称重法测量结焦量,称重法可较为 准确地测得全部结焦沉积物的质量,是目前国内外 广泛使用的结焦量测量方法。试验使用分度值为 0.01mg的电子微量天平(Sartorius BT-25S)。基本思 路是将试验件油管分割成若干段,称量每段清洗前 后的质量,利用求差法获得油焦的质量。

结焦测量流程:将油管分割段置于100℃的烘箱 内烘干后,第一次测量质量,然后使用清洗剂对分割 段进行超声波清洗,之后放入烘箱内第二次烘干,再 次质量测量。通过两次测量得到的质量求差,可得 到沿程分割段的结焦量,各段结焦量之和作为总结 焦量。经过重复性试验和解剖观察,本方法可完全 清洗掉毛细不锈钢管中的结焦沉积物。

2.3 试验件

本试验中提出了直管、L形弯管和螺旋管三种结构的试验件,其中L形弯管用来模拟"急弯"流动设计,螺旋管用来模拟"缓弯"流动设计。试验件均使 用直径Φ为3mm壁厚0.9mm规格的321不锈钢管。 2.3.1 直 管

图 4 为直管试验件的示意图,沿程布置 9 个 K 型 热电偶测温点。

直管试验件分段方式:将直管沿程分割为每段长 100mm的小段,并对其编号,编号如图4所示。

2.3.2 L形弯管

图 5 为 L 形弯管试验件的示意图,L 形弯管整体 上由三个区域组成:进口段 I、弯曲段 II 和出口段 II。 其中弯管段的弯曲半径为5mm,沿程布置10个 K型热 电偶测温点,测点布置在每段弯曲段正中间。L 形弯 管试验件分割方式:将 L 形弯管沿程分割为每段约 100mm长的小段,编号如图5所示。

分段后的L形弯管单元结构由进口平直段、弯曲 段以及出口平直段组成,考虑到局部结构特征处结 焦量可能存在差异,需要测量L形弯管局部结焦量, 选择L形弯管的两个特征部位,考虑到影响氧化结焦 特性的主要因素,如:沿程壁温和油温分布特性以及 燃油溶解氧浓度的差异等,选取的特征部位分别是 弯曲段前部3,4,5号分段和弯曲段中后部的9,10,11 号分段,将这些特征段进一步分割成更小的局部小 段,并对分割后的局部小段重新编号。切割方式如 图6所示,分割后的小段分为两种结构:弯曲局部和 直局部,具体形状和尺寸见局部放大视图。

2.3.3 螺旋管

图 7 为螺旋管试验件示意图,螺旋管整体上由三 个区域组成:进口段 Ⅰ、螺旋段 Ⅱ 和出口段 Ⅲ。其中 螺旋段的螺距为 5mm,螺旋直径为 45mm,共有 7 圈。

螺旋管试验件分割方式:将1,2,3,11,12,13,14 号分割成约100mm长的小段,将4,5,6,7,8,9,10号 分段,按一圈作为一段,每段长度约为141.3mm。

2.4 试验工况

试验燃油为国产 RP-3 航空煤油,试验工况:燃油进口温度为 393K,环境温度为 900K,加热时间为4h,进口压力为1MPa,进口流速分别为 2m/s 和 4m/s。

2.5 参数定义

试验测量了三种结构油路的沿程结焦量和单位

Fig. 5 Schematic of thermocouple laying in L-shaped pipe (mm)

Fig. 6 Schematic of partial segmentation of L-shaped pipe (mm)

Fig. 7 Schematic of segmentation of helix pipe

面积结焦量以及L形弯管的局部结焦量,其中油路的 沿程结焦量和L形弯管的局部结焦量,即为每个分割 段清洗前后的质量差;而单位面积结焦量 m'采用如 下公式定义

$$m' = \frac{m}{m}$$

式中m为所取分段的总质量,s为所取分段的内 表面积之和。

3 试验结果与分析

影响煤油氧化结焦反应的主要因素包括化学反 应和物理扩散。影响化学反应的主要因素有:温度、 溶解氧的浓度以及接触壁面材料等;影响物理扩散 的主要因素包括:滞留时间、扩散能力等。燃油结焦 反应按发生区域分为主流区和近壁区,当油温升高 到一定温度后,燃油中的某些组分与溶解氧发生化 学反应生成自由基产物(结焦前体),继而引发一系 列自由基链式反应最终导致结焦[15]。对于主流区生 成的焦体一部分被主流带走,另一部分向壁面处扩 散,沉积在高温壁面上;焦体沉积在管壁的同时,也 受到流体的冲蚀,一般试验测得的结焦量是这两种 作用复合影响的结果。目前,公开发表的文献大多 针对结焦的化学反应过程,针对影响焦体扩散的关 键因素研究较少,本文在分析不同油路结构沿程结 焦量分布规律的基础上,初步探讨了燃油湍流强度 对焦体扩散沉积过程的影响。

3.1 沿程结焦量

图 8 为不同流速下直管、L形弯管和螺旋管沿程 结焦量图,横坐标为流程长度,纵坐标为每段的结焦 量,编号为试验件分段号。图9为针对L形弯管试验 件在进口速度2m/s下开展的重复试验,其中横坐标 为分段号。一般认为结焦沉积过程是复杂的物理化 学过程,沉积在管壁上的焦体是沉积作用和冲蚀作 用复合结果,冲蚀作用会使结焦沉积出现波动。

考虑到加热炉的进出口不均匀性,试验件第一 段和最后一段的结焦量未做分析。由图8可以看出, 螺旋管的沿程结焦量显著高于L形弯管及直管。直

Fig. 8 Schematic of amount of coke along three structures at different V_{in} (T_{in} =393K, p_{in} =1MPa, T_s =900K, t=4h)

管的沿程结焦量表现为单峰值形式,该峰值在直管的中后部出现;L形弯管的沿程结焦量存在较大波动,当燃油在进入L形弯管的弯曲段后,结焦量开始迅速增加,并且随着流速的增加,结焦峰值提前出现;螺旋管的沿程结焦量出现了两个峰值,第一个峰值在螺旋管分段号4号,即螺旋管的第一圈,第二个峰值在8号和10号。

为了进一步分析三种结构油路的沿程结焦量分 布特性,使用Fluent软件对三种结构下的流动进行数 值模拟,操作压力为1MPa,介质为RP-3航空煤油,燃 油流速为分别为2m/s和4m/s。得到了三种油路的沿 程湍流强度,见表1和表2,其定义为脉动速度的均方 根值比平均速度,是衡量湍流脉动剧烈程度的物理 量。图10为L形弯管截面示意图。从计算结果可以 看出直管的沿程湍流强度较小;对于L形弯管,燃油 进入弯曲区域后,湍流强度开始增加,当进入直管段 区域后湍流强度开始下降;而螺旋管沿程都保持了 较高的湍流强度。

对于直管,随着燃油在管道中的流动,受加热炉 的加热作用沿程壁温和油温不断升高,促进了氧化

Fig. 10 Schematic of L-shaped section (mm)

 Table 1
 Turbulent intensity along straight and helix (%)

$V_{\rm in}/({\rm m/s})$	Straight	Helix
2	16.9	18.7
4	30.3	33.3

结焦的化学反应速率,自由基(结焦前体)生成浓度 随之增大,相应的结焦量也开始增大。但与此同时, 燃油中的溶解氧浓度因反应消耗而不断下降,自由 基的生成速率受限,壁面处的沉积结焦主要依靠物 理对流和扩散,综合因素导致直管的沿程结焦量在 上升到峰值后开始下降。

对于L形弯管,沿程结焦量存在较大幅度的波 动,较大的几个峰值出现在L形弯管的弯曲段。当燃 油进入试验管的弯曲区域后,由于L形弯管的流动特 征,产生了径向方向上的双漩涡二次流动,加强了流 体径向的扰动与掺混。与此同时,弯管内侧为低流 速区,主流流过此处时会与内壁面分离并在下游直 管段再附,此过程增大了流体的湍流强度,强化了输 运作用:而弯管的外侧壁面在流体的直接冲蚀作用 下,边界层受到破坏,强化了壁面处对流换热强 度16;通常认为升温可以促进化学反应速率,而流体 输运作用的增强也进一步促进了焦体向壁面的扩散 和沉积;同时结焦量也受到溶解氧浓度消耗的影响, 在试验件中后部开始回落;考虑到部分焦体被主流 冲刷到弯曲区域后开始沉积堆聚,进一步促进了焦 体在弯曲段沉积,同时也使得结焦量在弯曲段存在 较大的波动。

对于螺旋管试验件,当燃油进入螺旋段区域内, 受到指向弯道外侧的离心力的作用^[17-18],产生了垂直 于主流流向的双漩涡二次流动,加强流体径向掺混, 增大了湍流强度,强化输运作用,并且有利于自由基 链式反应的进行。此外,在螺旋管流动中,燃油运动 的方向时刻在发生变化,这一过程可能增加了焦体 在壁面附着的概率。

针对螺旋管沿程结焦量出现的第二个峰值,目前有几种解释:(1)航空煤油是一种成分十分复杂的 混合物,由C5-C16等多种链烃、环烷以及芳香族化 合物等组成^[19]。不同组分的最大结焦速率对应的温 度也不相同,第二峰值出现的原因可能是随着油温 的升高,燃油中的某些组分达到了最大结焦速率。

Table 2Turbulent intensity along L-shape (%)

$V_{\rm in}/({\rm m/s})$	0° section	45° section	90° section	Downstream 5mm	Downstream 10mm	Downstream 15mm	Downstream 20mm
2	31.6	36.8	37.5	36.1	33.6	32.2	31.9
4	17.8	20.9	20.2	19.6	18.2	17.7	17.8

王英杰等^[13]对同一批次 RP-3 煤油在不同试验工况 下也发现了双峰值结焦量的现象。(2)螺旋管的沿程 壁温和油温受加热炉的加热作用而不断升高,两者 温度的升高均会促进燃油氧化结焦的化学反应速 率;此外,高温壁面进一步促进了焦体在壁面的粘附 作用;温度升高对生成结焦量的促进作用平衡或者 抵消了燃油中溶解氧和自由基被消耗的影响,综合 以上因素,螺旋管沿程结焦量出现了第二个峰值。

3.2 局部结焦量

试验测量了L形弯管在工况参数为进口燃油压力 1MPa,流速 2m/s,进口油温 393K 和环境温度 900K,加热时间为4h下的局部结焦量,结果如图 11 所示。

L形弯管前部特征段的局部结焦量整体沿流向 呈下降趋势,但沿程的局部结焦量仍存在波动。结 焦量峰值出现在段号为2的小段(即3号特征段的第 二个弯),且在段号为1的小段(3号特征段的第一个 弯)就存在较大的结焦量。因此结焦量没有明显的 延迟。除去段号为1(第一弯)和段号为2(第二弯)的 小段外,整体来看,L形弯管的弯曲局部结焦量没有 显著高于直管局部结焦量。

分析L形弯管中后部特征段的局部结焦量,可见 结焦量整体较L形弯管前部特征段偏小,并且沿流向 呈现下降趋势,沿程结焦量也存在一定程度的波动。 同样其直管段和弯曲段的结焦量没有明显差异。

3.3 单位面积结焦量

表3为不同进口燃油流速下,三种结构试验件的 单位面积结焦量 m'。直管是计算第二段到第九段的 单位面积结焦量,螺旋管和L形弯管则是将出口一部 分去除,只保留与直管相同流程长度的部分。不难 发现,在相同试验工况下螺旋管的单位面积结焦量 最高。

Table 3Amount of coke per unit area of three structures atdifferent V $(ug:mm^{-2})$

	unitit	(µg mm)	
$V_{\rm in}/({\rm m/s})$	Straight	L-shaped	Helix
2	1.24	2.54	8.78
4	0.77	2.33	6.55

本文认为造成这一现象的主要原因是L形弯管 和螺旋管这两种弯曲结构对流动和换热影响区域的 大小和程度不同。可以大致将L形弯管的单元结构 分为两部分:第一部分为进入弯曲段之前的20mm直 管基本没有受到弯曲带来的影响,其流动和换热特 性和直管保持基本一致;第二部分为弯曲段以及下

游的20mm直管段,由于流体受到弯曲结构的影响, 其流动和换热特性得到增强。燃油在流过L形弯管 试验件的过程中会不断经历流动与换热特性的周期 性变化。对于螺旋管,当流体进入螺旋区域后,一直 保持着弯管内流动和换热特性,而L形弯管流动只在 其弯曲段及下游的有限范围内保持这样的流动换热 特性。

3.4 沿程壁温

图 12为在不同进口流速下直管和L形弯管的沿 程壁温。横坐标为流程长度,编号为试验件分段号。 图 13为L形弯管试验件在进口流速 4m/s的工况下, 监测并记录在 4h加热过程中的壁温变化情况。由图 12可以看出,两种试验管的沿程壁温均呈现出先增 大后减小的趋势,其峰值位置出现在试验管的中后 部位置。对比两种试验管的沿程壁温,不难发现在 试验件的前部,两者壁温基本相差不大,但从5、6号 分段开始,L形弯管的壁温明显高于直管。图13表明 试验件壁温随着加热时间的增加而升高。

燃油在试验管内沿程温度不断升高,油温与环境温度之间的温差不断缩小,导致燃油和管壁的换热量减少,壁温沿程不断升高;同时随着管壁附着的 焦体厚度增加,传热热阻增加,油焦的导热系数很小 (0.19~0.28W/(m·K))^[20],管壁的热量不易被燃油带

Fig. 12 Schematic of wall temperature distribution at different V_{in} (T_{in} =393K, p_{in} =1MPa, T_{i} =900K, t=4h)

走,导致壁温升高;在试验管的出口位置其结焦量减 小,管壁焦体的厚度变薄,管壁与燃油间的换热系数 增大,壁面温度开始降低。沿程壁温的变化趋势是 这两种因素叠加的综合效果。

对于两种试验管在中后程壁温偏差较大的原因 主要有:燃油在L形弯管的流动中,会发生周期性的 流动换热强化效应,油温和壁温沿程不断增加;此 外,结合沿程结焦量数据不难发现,L形弯管的沿程 结焦量明显高于直管,附着在壁面的焦体极大地增 加了传热热阻,导致壁温升高,图13的测点壁温图也 可以间接表明随着管壁附着的焦体的增加,对应测 点的壁温在持续升高。综合以上两个原因,L形弯管 在中后程壁温明显高于直管。 4 结 论

本文通过对国产 RP-3 航空煤油在三种典型油 路结构内的氧化结焦特性试验研究,得出如下结论:

(1)直管的沿程结焦量分布呈现先增加后减少的形式,其峰值在试验管的中后部出现。

(2)L形弯管在进入弯曲区域后结焦量迅速增加,其沿程结焦量存在较大幅度的波动;测量了L形 弯管的局部结焦量,结果表明直管局部和弯曲局部 的结焦量不存在明显差异。

(3)螺旋管的沿程结焦量呈现出双峰值形式,其 单位面积的结焦量最大,当燃油进口速度为2m/s时, 其值约是L形弯管的3.46倍。

(4)本文认为主要是由于不同结构油路对流体 流动和换热影响程度的不同而造成结焦量的差异; 同时弯曲结构会强化焦体的输运作用,增加管壁的 结焦沉积量;在航空发动机的油路设计中,应优先使 用曲率较大的弯曲结构,以达到减少结焦量的目的。

参考文献

- [1] Edwards T, Zabarnick S. Supercritical Fuel Deposition Mechanisms [J]. Industrial & Engineering Chemistry Research, 1993, 32(12): 3117-3122.
- [2] Taylor W F, FrankenFeld J W. Deposit Formation from Deoxygenated Hydrocarbons.3. Effects of Trace Nitrogen

and Oxygen Compounds [J]. Industrial and Engineering Chemistry Research, 1978, 17(1): 86-90.

- [3] Eser S. Mesophase and Pyrolytic Carbon Formation in Aircraft Fuel Lines[J]. Carbon, 1996, 4: 539-547.
- [4] Edwards T, Harrison B, Zabarnick S, et al. Update on the Development of JP-8+100[R]. AIAA 2004-3886.
- [5] Tevelde J A, Glickstein M R. Heat Transfer and Thermal Stability of Alternative Aircraft Fuels [R]. NAPC-PE-87C, 1983.
- [6] Chin J S, Lefebvre A H. Experimental Techniques for the Assessment of Fuel Thermal Stability [J]. Journal of Propulsion & Power, 1992, 8(6):1152-1156.
- [7] Chin J S, Lefebvre A H. Temperature Effects on Fuel Thermal Stability[J]. Journal of Engineering for Gas Turbines & Power, 1992, 114:2(2): 353-358.
- [8] 裴鑫岩. 航空煤油超临界换热与氧化结焦理论与实验研究[D]. 北京:清华大学, 2016.
- [9] 骆东. RP-3 航空煤油热氧化结焦特性试验研究[D]. 南京:南京航空航天大学, 2016.
- [10] 郑 东,于维铭,钟北京. RP-3 航空煤油替代燃料及
 其化学反应动力学模型[J].物理化学学报,2015,
 (4):636-642.
- [11] Klavetter E A, Martin S J, Wessendorf K O. Monitoring Jet Fuel Thermal Stability Using a Quartz Crystal Micro-

balance[J]. Energy & Fuels, 1993, 7(5): 582-588.

- [12] 朱玉红.吸热燃料超临界热裂解过程抑焦技术研究[D].天津:天津大学,2007.
- [13] 王英杰,徐国强,邓宏武,等.进口温度影响航空煤 油结焦特性试验[J].航空动力学报,24(9),2009: 1972-1976.
- [14] 金 迪,徐国强,王英杰,等.不锈钢表面氧化对 RP-3 航空煤油热氧化结焦的影响[J].航空发动机,2010,36(1):34-37.
- [15] Chin J S, LefebvRe A H. Influence of Flow Condition on Deposits from Heated Hydrocarbon Fuels [J]. Journal of Engineering for Gas Turbines and Power, 1993, 115(3): 433-438.
- [16] 姬鹏飞.典型管路 RP-3 航空煤油热氧化结焦沉积特 性研究[D].南京:南京航空航天大学,2018.
- [17] 郭小勇,赵创要,王良璧,等.螺旋管中二次流强度 的数值研究[J].甘肃科学学报,2011,23(3):87-92.
- [18] 陈华军,章本照.旋转弯管内耦合对流换热特性研究[J].空气动力学学报,2002,20(4):446-457.
- [19] Spadaccini L J, Sobel D R, Huang H. Deposit Formation and Mitigation in Aircraft Fuels[J]. Journal of Engineering for Gas Turbines & Power, 1999, 121(4): 741-746.
- [20] 姬鹏飞,张净玉,袁 策,等. 航空煤油 RP-3 结焦产物 的物性[J]. 航空动力学报, 2018, 33(8): 1880-1885.

(编辑:张 贺)