基于结合部优化的脉冲燃烧风洞 测力系统动态特性优化^{*}

李世超1, 高宏力1, 刘伟雄2, 张小庆2, 刘勃锴1

(1. 西南交通大学 机械工程学院,四川 成都 610000;2. 中国空气动力研究与发展中心 高超中心,四川 绵阳 621000)

摘 要:对脉冲燃烧风洞测力系统动态特性进行优化有助于改善风洞测力实验数据的准确性。提出 了一种基于结合部动态特性优化来改善测力系统整机动态特性的方法。首先在Ansys中准确建立了风洞 测力系统整机有限元模型,其中采用弹簧-阻尼模型来模拟结合部的接触特性,通过Yoshimura法计算出 弹簧-阻尼单元的刚度系数和阻尼系数。其次,进行模态分析,并计算各阶模态下的测力系统应变能密 度分布,基于应变能密度分布分析发现结合部为测力系统刚度最为薄弱的地方。最后,以结合部接触面 压为优化变量对测力系统进行动态特性优化,对比了优化前后测力系统的前五阶固有频率和天平应变片 粘贴处的频响函数,发现优化后的整机固有频率较优化前有明显的提高,最高提高了16.7%,所有应变 片粘贴处的频响函数幅值较优化前有明显的降低,测力系统的动态特性有了较明显的改善,验证了该优 化方法的可行性。

关键词:脉冲燃烧风洞;测力系统;结合部;应变能密度;动态特性优化 中图分类号:TJ76;V21 文献标识码:A 文章编号:1001-4055 (2018) 01-0176-09 DOI: 10.13675/j. cnki. tjjs. 2018. 01. 020

Joint Part Based Dynamic Property Optimum of Force Measuring System in Impulse Combustion Wind Tunnel

LI Shi-chao¹, GAO Hong-li¹, LIU Wei-xiong², ZHANG Xiao-qing², LIU Bo-kai¹

(1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610000, China;

2. Air-breathing Hypersonic Technology Research Center, China Aerodynamics Research and Development Center, Mianyang 621000, China)

Abstract: Optimizing dynamic performance of force measuring system in impulse combustion wind tunnel can be helpful in improving the accuracy of the wind tunnel force measurement experimental data. A novel method is proposed, which is based on joint part dynamic property optimum, to improve the dynamic property of force measuring system in impulse combustion wind tunnel. To the beginning, the Ansys finite element model of force measuring system is established precisely. The spring–damper model, whose stiffness coefficient and damping coefficient can be calculated by Yoshimura method, are used to describe contact characteristic of joint part. Next, the modal analysis and the calculation of strain energy density distribution for force measuring system is carried out. On the basis of strain energy density distribution, joint part is the weakest part of stiffness in force measuring system. Finally, surface pressure of contact area working as optimization variable is conducted to optimize the dynamic performance of force measuring system. The top 5 inherent frequencies and the frequency response function of strain gauge in wind load balance of the optimal force measuring system are compared with original force

* 收稿日期: 2017-05-06; 修订日期: 2017-06-26。

基金项目:高超声速冲压发动机技术重点实验室基金(STS/MY-ZY-2015-007);国家自然科学基金(51275426)。 作者简介:李世超,男,博士生,研究领域为结构动力学。E-mail:lsc13622162338@163.com measuring system. Comparing with the original condition, results show that the inherent frequencies of force measuring system are improved efficiently, the maximum one is up to 16.7%. And the amplitude for frequency response functions of strain gauge is evidently reduced. It also shows that the dynamic characteristics of force measuring system are improved obviously. The feasibility of the proposed optimization method is validated.

Key words: Impulse combustion wind tunnel; Force measuring system; Joint part; Strain energy density; Dynamic property optimization

1 引 言

飞行器模型在脉冲燃烧风洞中进行测力试验时,风洞启动产生的高速气流会对测力系统产生一个瞬态冲击,从而使系统产生瞬态振动,由于脉冲风洞试验时间短^[1~3],仅有100~300ms,在试验过程中振动不能衰减完全,从而影响测力试验数据的准确性。此外,模型振动严重时还会危及试验设备和人员的安全,缩短设备的使用寿命,造成系统故障率上升^[4]。

国内外对风洞测力系统减振技术开展了大量研 究^[4~14]。梁鉴等^[4]利用增加阻尼以降低振动的方法 并且在不改变风洞现有结构的前提下设计了一套抑 振装置,该装置工作后有效的抑制了模型的纵向振 动,振动幅值降低了一个量级。Igoe W B 等^[5]通过在 飞行器模型内安装被动式阻尼器来抑制模型的振 动,取得了一定的效果。佘重禧等[6]建立了飞行器模 型降阶后的有限元模型,并基于一种简化的H混合 灵敏度控制方法,实现了模型低频大幅俯仰振动的 主动抑制,并采用仿真的方式验证了模型振动抑制 的效果。王学等^[7]在飞行器模型内部安装压电陶瓷 堆作动器,通过作动器产生的激励力来降低飞行器 模型的振动强度,其中控制系统利用天平实时测力 数据作为反馈信号,该研究还对比了压电陶瓷安装 在不同位置时的抑振效果。刘巍等^[8]提出了一种基 于叠堆式压电陶瓷作动器的模型主动抑振策略。通 过实时测试飞行器模型的振动,基于PD调节器的控 制系统依据此信号输出控制信号给抑振器。地面试 验表明,抑振器具有提高支杆系统阻尼的能力,对风 洞模型在俯仰和偏航两个方向上的抑振效果明显。 陈卫东等阿采用主动控制原理设计了一套模型抑振 装置。将电磁式作动器装载于试验模型的内部空 腔,基于学习控制算法对测力系统的振动进行实时 的控制,并通过地面试验验证了抑振装置的有效 性。S.Balakrishna^[10~12]等在飞行器模型内安装压电 陶瓷作动器并与测力天平构成闭环控制系统,天平 信号为控制系统提供反馈信号,控制系统向压电陶 瓷作动器发送控制信号,压电陶瓷作动器产生激振力,从而使得飞行器模型的振动得到衰减。Pereira^[13]等设计了一套阻尼系统并安装在飞行器模型内,该 阻尼系统通过压电作动器来对飞行器模型的振动进 行抑制,并通过实验验证了该阻尼系统的有效性。 Shuai Li^[14]等选择对支架进行优化来改善测力系统 整机动态特性,从而达到降低测力系统振动强度的 效果。

通过对已有文献分析发现,目前对风洞测力系 统抑振措施的研究主要集中于振动的主动或被动控 制,通过动态特性优化来改善测力系统动态特性的 研究较少,在较少的此类研究中,动态特性优化又主 要集中于对零部件的优化,而对结合部进行优化的 方法尚未见报道。本文提出了一种通过结合部优化 来改善测力系统整机动态特性从而降低系统振动强 度的方法。首先,基于Ansys建立了测力系统整机动 力学模型,其中采用弹簧-阻尼模型来描述结合部的 动态特性,并根据 Yoshimura 法计算出弹簧-阻尼单 元的刚度系数和阻尼系数。在准确建立整机有限元 模型的基础上,对其进行理论模态分析,计算测力系 统中各零部件和结合部在各阶模态下的应变能密度 分布,通过对比零部件和结合部的应变能密度大小 来揭示结合部动态特性对测力系统整机动态特性的 影响程度,最后通过结合部动态特性优化来实现测 力系统整机动态特性的提升。

2 测力系统概述

本文的研究对象为某脉冲燃烧风洞测力系统。 该测力系统的结构简图如图1所示,主要由飞行器模型,天平和支架组成。天平、飞行器模型与支架间均 采用16个M16的螺钉进行连接。其中测力天平为盒 式应变天平,其结构简图如图2所示,由浮动框、固定 框和弹性测量元件组成,弹性测量元件将浮动框和 固定框连接成一整体。工作时风洞产生的气流作用 在飞行器模型上产生气动力,使得天平浮动框与固 定框发生相对位移,粘贴于测量元件上的箔式应变 计产生形变,从而导致电阻发生变化,惠斯通电桥将 电阻的变化转变为电压输出,此即测力系统的测试 原理。

Fig. 1 Diagram of force measuring system

Fig. 2 Instruction diagram of strain balance

3 测力系统动态特性对测试精度的影响

脉冲燃烧风洞测力试验过程中,风洞启动产生的高速气流会对测力系统产生瞬态冲击从而诱发测力系统发生瞬态振动,由于测试时间短,在有效试验时间内振动不能衰减完全,此时天平测量元件处的位移 $x_1(t)$ 为瞬态振动所引起的位移 $x_1(t)$ 与气动力作用下所产生的位移 $x_2(t)$ 的综合 $x(t) = x_1(t) + x_2(t)$,根据应变天平测试原理 $F(t) = K \cdot x(t)$,其中 F(t)为辨识出的气动力,x(t)为天平元件在试验过程中的位移,K为常数,通过天平静态标定试验获得。由此可知,测力系统的瞬态振动会对天平测试精度产生不可忽视的影响,振动强度越大,误差越大。

根据模态理论的相关知识,测力系统各点的振动响应由激励力频率范围内的模态数与模态振型共同决定,改善测力系统动态特性(包括:提高各阶模态固有频率与降低频响特性曲线在各阶模态处的幅值)有助于降低天平测量元件处的振动响应,从而达到提高测力系统测试精度的目的。

4 基于结合部优化的整机动态性能优化

结合部指的是零部件间相互接触并传递位移与 载荷的部位。机床动力学领域的大量研究表明^[15], 结合部动态特性对整机动态特性有着重要影响,对 于风洞测力系统而言,从本质上看,其与机床一样, 均为组合体,因此测力系统中的结合部动态特性对 系统整机动态特性理应存在重要影响,通过结合部 的优化能够有效改善测力系统整机动态特性。然 而,目前关于测力系统结合部动态特性对整机动态 特性影响的研究尚未见报道,因此本文首先基于 Ansys研究了测力系统中结合部动态特性对整机动态特 性的影响。

4.1 脉冲风洞测力系统有限元建模

4.1.1 测力系统几何模型的简化

测力系统中包含许多微小结构,例如孔,倒角和 圆角等,它们对整机动态特性影响很小,但在有限元 分析中会明显增加网格数量,增大计算量,因此,对 整机模型进行合理的简化能有效降低计算成本,提 高计算效率。本研究按照以下原则对测力系统进行 简化:

(1)忽略结构中的小倒角和圆角。

(2)删除结构中的小定位孔及螺纹孔等细小特征。 简化后的模型如图3所示。

Fig. 3 Simplified model of force measuring system

4.1.2 风洞测力系统整机动力学模型的建立

测力系统是由各零部件通过结合部连接而成的,因此测力系统的动力学建模包括单一零部件的 建模和结合部的建模。

4.1.2.1 单一零部件建模

测力系统的主要零部件有飞行器模型,应变天平和支架。飞行器模型选用不锈钢加工,天平材料为00Ni18Co8Mo5TiAl,模型支架为碳钢,上述材料的主要参数如表1所示。在Ansys中采用20节点的Solid186单元和10节点的Solid187单元分别对飞行器模型,天平和支架进行网格划分。共得到88455个单元,181626个节点。

Table 1 Material Properties

Material name	Elasticity modulus/GPa	Density/ (kg/m³)	Poisson ratio	
Stainless steel	200	8×10^{3}	0.26	
00Ni18Co8Mo5TiAl	175.4	8×10^{3}	0.27	
Carbon steel	210	7.8×10^{3}	0.28	

4.1.2.2 固定结合部建模

研究表明,结合部的阻尼,刚度分别占整体阻尼 与刚度的90%和60%以上^[15],因此在测力系统动力 学建模时必须正确描述结合部的动态特性。在测力 系统中对整机动态特性起主要作用的结合部为飞行 器模型-天平螺钉固定结合部,天平-支架螺钉固定 结合部。由于结合部表现出即存储能量又释放能量 的特点^[16],因此本文采用弹簧-阻尼模型来描述测力 系统中主要结合部的动态特性,对系统动态特性影 响较小的结合部在Ansys中采用粘接处理。在结合 部中每一个螺钉位置用一个法向弹簧阻尼单元和两 个切向弹簧阻尼单元描述,结合部的弹簧-阻尼模型 如图4所示,其中圆圈代表螺钉的位置。

Fig. 4 Spring damping model of joint part

弹簧阻尼单元中的刚度和阻尼系数采用理论计 算的方法获得,计算流程为:首先根据 Yoshimura法 获得结合面单位面积的刚度系数和阻尼系数;其次, 对结合面上单位面积的刚度系数和阻尼系数;其次, 付到结合部整体刚度系数和阻尼系数;最后,将其均 分给所有弹簧-阻尼单元,就得到了每个弹簧-阻尼 单元中的刚度系数和阻尼系数。结合部整体刚度系 数和阻尼系数计算公式^[17]如下:

$$K_{n} = \int k_{n}(p_{n}) \mathrm{d}s \tag{1}$$

$$K_{t} = \int k_{t}(p_{n}) \mathrm{d}s \tag{2}$$

$$C_{n} = \int c_{n}(p_{n}) ds \tag{3}$$

$$C_{t} = \int c_{t}(p_{n}) \mathrm{d}s \tag{4}$$

式中 K_n , K_i , C_n , C_i 分别为某一结合部的法向 总刚度、法向总阻尼系数, 切向总刚度、切向总阻尼 系数; p_n 为结合部面压; $k_n(p_n)$, $c_n(p_n)$, $k_t(p_n)$, $c_t(p_n)$ 为某一结合面上单位接触面积的法向刚度、阻尼系 数和单位接触面积的切向刚度、阻尼系数。 其中结合部面压可由计算公式(5),(6)获得

$$p_n = \frac{2T}{\tan(\varphi + \rho_v)d_2 + 2\mu r}$$
(5)

$$r = \frac{D_{\rm w}^3 - d_0^3}{3(D_{\rm w}^2 - d_0^2)} \tag{6}$$

式中 d_2 为螺纹中径; φ 为螺纹升角; ρ_v 为螺纹 当量摩擦角; μ 为螺母与被连接件支撑面间的摩擦 因数; D_w 为六角螺母直径; d_0 为螺钉中径;T为螺 钉的预紧力矩。

由公式(5),(6)计算出结合面面压,通过查询文 献[18]可以得到结合面单位接触面积的刚度与阻尼 系数,由公式(1)~(4)求出结合部总刚度系数和总 阻尼系数。以飞行器模型-天平螺钉固定结合部,天 平-支架螺钉固定结合部为例,根据设计要求计算出 飞行器模型-天平螺钉固定结合部与天平-支架螺钉 固定结合部的结合面面压分别为 8.95MPa,2.4MPa, 结合部中各结合面的粗糙度均为 3.2 μm,基于结合 面压查询文献[18]得到的单位接触面积的刚度与阻 尼系数分别如表 2 所示,计算得到的单个弹簧阻尼单 元的刚度系数和阻尼系数如表 3 所示。

Table 2 Basic parameters of the joint part/ $(k/(N/m^3); c/(N \cdot s/m^3))$

Joint	k_{n}	C _n	k_{ι}	\mathcal{C}_{n}
Strain balance– Aircraft	3.78×10^{11}	6.73×10^{8}	2.13×10^{10}	1.57×10^{10}
Strain balance– Support	4.54×10^{11}	7.18×10^{8}	4.63×10^{10}	2.51×10^{7}

Table 3 Stiffness coefficient and damping coefficient of spring-damp element/(*K*/(N/m); *C*/(N/(m · s)))

Joint	K_{n}	C_{n}	K_{ι}	C_{i}
Strain balance– Aircraft	2.36×10^{10}	4.21×10^{7}	1.33×10^{9}	9.81×10^{8}
Strain balance– Support	2.84×10^{10}	4.48×10^{7}	2.89×10^{9}	1.57×10^{6}

4.1.2.3 测力系统整体动力学模型

综合所有单一整体零部件的有限元模型与结合 部的弹簧阻尼模型,得到测力系统整机动力学模型 如图5所示。其中支架与地面的连接采用完全固定 的约束方式。

Fig. 5 Finite element model of force measuring system

本文通过对比零部件与结合部在各阶模态下的 应变能密度大小,揭示结合部的动态特性对整机动 态特性的影响。结构在外力作用下产生弹性变形 时,在结构内部将积蓄应变能,每单位体积物体内所 积蓄的应变能称为应变能密度,计算公式为

$$E_s^r = \frac{(A_s^r)^{\mathrm{T}} \boldsymbol{K}_s(A_s^r)}{V}$$
(7)

式中 E'_{s} 为结构S在r阶模态下的应变能密度; A'_{s} 为结构S中所有自由度在r阶模态下的振型; $(A'_{s})^{T}$ 为 A'_{s} 的转置向量; K_{s} 为结构S的刚度矩阵; V_{s} 为结构S的体积;

由应变能密度可以直观的看出测力系统在各阶 模态下振动时的应变能分布,若某个由N个零部件 组成的系统,其中第S个结构的应变能密度均高于其 它零部件的应变能密度,表明该零部件为整机刚度 最为薄弱处,因此优化该结构的刚度比优化其它结 构的刚度能更为有效地改善系统的动态特性,由此 说明它对整机动态特性存在重要影响。

4.2.1 整机动态特性影响因素对比

不同的飞行器模型、天平与支架组成了不同的 测力系统,由此可知,不同测力系统中结合部动态特 性对整机动态特性的影响程度也不相同,为了揭示 在普遍情况下结合部动态特性对测力系统整机动态 特性的影响,笔者分别研究了在飞行器模型、天平与 支架动态特性发生改变的前提下,结合部动态特性 对整机动态特性的影响程度。零部件的动态特性是 由其刚度分布、质量分布和阻尼分布决定的,研究表 明^[15],组合体90%以上的阻尼来源于结合部,零部件 自身的结构阻尼相比于结合部处的阻尼可以忽略不 计,因此本研究不考虑零部件的结构阻尼。不同的 测力系统其零部件的动态特性均不同,可以通过在 不改变零部件形状的条件下改变其弹性模量、密度 来模拟不同测力系统中零部件动态特性的变化。综 上所述,笔者采用对测力系统中结合部应变能密度 和零部件应变能密度进行比较的方法,分别研究了 飞行器模型、天平与支架的弹性模量和密度变化情 况下,结合部对测力系统整机动态特性的影响程度。

分别改变飞行器模型、天平与支架的弹性模量 和密度,并且每次只改变一个零部件中的某一个参数,总共得到23种分析方案,采用Ansys有限元分析 软件对所有方案的前五阶模态进行分析,根据公式 (7)计算测力系统在各阶模态下所有零部件的平均 应变能密度和结合部的应变能密度,如表4~9所

示。通过观察发现,随着飞行器模型弹性模量的增 大,零部件和结合部处的应变能密度在任意模态下 均不断增大,并且在任意方案中,结合部的应变能密 度要大于零部件,只有第四阶模态下结合部处的应 变能密度要小于零部件。当改变飞行器模型的密度 时,如表5所示,随着飞行器模型密度的增大,零部件 和结合部处的应变能密度在任意模态下不断减小, 并且在任意方案中,结合部的应变能密度要大于零 部件,只有第四阶模态下结合部处的应变能密度要 小于零部件。通过上述分析可以说明,对于不同的 飞行器模型所组成的测力系统,结合部均为整机刚 度最为薄弱的地方,使得整机出现低频振动,并且增 大了测力系统振动的幅度。如表6-9所示,当分别改 变天平与支架的弹性模量和密度时,系统应变能密 度分布展现出了与表4-5相同的规律性。通过观察 发现在任意方案中,结合部的应变能密度均要大于 结合部处的应变能密度,只有第四阶模态下结合部 处的应变能密度要小于零部件。综上所述,在大多 数的风洞测力系统中,结合部均为整机中刚度最为 薄弱的地方,因此,通过改善结合部动态特性相较于 其它零部件而言能更为有效地提升测力系统整机动 态特性,然而现有的研究只是对单一零部件的动态 特性进行改善以此来提高整机的动态特性。

4.2.2 结合部动态特性优善

根据上节研究得到的结论,以应变能密度最大的结合部作为整机动态特性优化的部位。由Yoshimura法可知,结合部的刚度与接触面面压、粗糙 度、材料及面积有关,由于设计要求的限制,结合面 粗糙度、材料及面积只能在很小的范围内进行优化, 效果有限,因此本文选用接触面面压作为优化变量 来改善结合部的刚度,从而达到优化测力系统整机 动态特性的目的,其中结合部的面压可以通过调整 螺钉的预紧力矩来实现。本研究以结合部的接触面 压为优化变量列出表10所示的9组优化方案。采用 Yoshimura法计算每组方案下的弹簧-阻尼单元刚度系 数和阻尼系数并将其带入到Ansys中进行计算,分析 发现,第9组优化方案下的结合部应变能密度改善最 为明显,因此选用第9组方案为结合部最终优选方案。

对优化前后的测力系统有限元模型进行模态分析,表11列出了优化前后整机前五阶模态的比较结果,从表中可以看出优化后的测力系统各阶固有频率比优化前均有较明显提高。

分别对优化前后的测力系统整机模型进行谐响 应分析,提取应变天平中应变片粘贴处的频响函数,

Table	- Strain th	ici gy uch	sity distribution		c-measuring s	system are	ci mouriying a		lasticity mouu	ius
Elasticity	First-orde	r modal	Second ord	er modal	Third orde	er modal	Fourth ord	er modal	Fifth orde	r modal
modulus/GPa	Component	Joint	Component	Joint	Component	Joint	Component	Joint	Component	Joint
61	0.376	4.794	0.425	3.035	1.155	10.763	2.817	0.051	4.275	70.217
72	0.397	5.368	0.444	3.297	1.249	12.977	3.244	0.053	4.607	76.069
84	0.415	5.905	0.462	3.549	1.340	15.441	3.701	0.056	4.946	80.123
96	0.431	6.367	0.477	3.771	1.420	17.904	4.155	0.059	5.272	82.618

 Table 4
 Strain energy density distribution of force-measuring system after modifying aircraft elasticity modulus

Table 5 Strain energy density distribution of force-measuring system after modifying aircraft density

Density/	First-order	· modal	Second orde	er modal	Third orde	r modal	Fourth orde	r modal	Fifth order	modal
(kg/m^3)	Component	Joint	Component	Joint	Component	Joint	Component	Joint	Component	Joint
1810	0.536	7.208	0.731	8.314	1.702	18.850	4.260	0.068	5.605	95.922
2810	0.397	5.368	0.444	3.297	1.249	12.978	3.244	0.053	4.607	96.069
3810	0.312	4.260	0.341	2.546	0.985	9.875	2.620	0.044	3.866	63.006
4810	0.258	3.251	0.277	2.083	1.417	17.904	2.198	0.038	3.346	53.714

Table 6 Strain energy density distribution of force-measuring system after modifying strain balance elasticity modulus

Elasticity	First-orde	er modal	Second ord	er modal	Third orde	er modal	Fourth orde	er modal	Fifth orde	er modal
modulus/GPa	Component	Joint	Component	Joint	Component	Joint	Component	Joint	Component	Joint
160	0.360	4.489	0.408	2.771	1.163	11.753	3.244	0.041	4.259	59.610
187	0.397	5.368	0.444	3.297	1.249	12.977	3.244	0.053	4.607	76.069
200	0.410	5.758	0.459	3.532	1.283	13.502	3.244	0.059	4.717	83.551
220	0.433	6.341	0.482	3.884	1.334	14.287	3.244	0.069	4.962	94.756

Table 7 Strain energy density distribution of force-measuring system after modifying strain balance density

Density/	First-order	r modal	Second orde	er modal	Third orde	er modal	Fourth orde	er modal	Fifth orde	r modal
(kg/m^3)	Component	Joint	Component	Joint	Component	Joint	Component	Joint	Component	Joint
7000	0.3969	5.3673	0.4444	3.2984	1.2540	12.8216	3.2438	0.0534	4.6794	75.6416
8000	0.3968	5.3679	0.4442	3.2972	1.2492	12.9766	3.2438	0.0533	4.6073	76.0689
8500	0.3967	5.3682	0.4441	3.2966	1.2472	13.0545	3.2438	0.0533	4.5717	76.2342
9000	0.3966	5.3685	0.4439	3.2960	1.2449	13.1324	3.2438	0.0533	4.5364	76.3695

Table 8	Strain energy density	v distribution of force-	-measuring system after	r modifying support	elasticity modulus
---------	-----------------------	--------------------------	-------------------------	---------------------	--------------------

Elasticity	First-orde	er modal	Second ord	ler modal	Third orde	er modal	Fourth ord	er modal	Fifth orde	er modal
modulus/GPa	Component	Joint	Component	Joint	Component	Joint	Component	Joint	Component	Joint
190	0.3955	5.3328	0.4413	3.2541	1.2490	12.9674	3.2438	0.0531	4.6008	75.7062
210	0.3968	5.3679	0.4442	3.2972	1.2492	12.9766	3.2438	0.0533	4.6073	76.0689
230	0.3978	5.3971	0.4466	3.3335	1.2499	12.9840	3.2438	0.0535	4.6128	76.3698
250	0.3988	5.4217	0.4487	3.3644	1.2499	12.9840	3.2439	0.0537	4.6173	76.6238

 Table 9
 Strain energy density distribution of force-measuring system after modifying support density

Density/	First-orde	r modal	Second orde	er modal	Third orde	er modal	Fourth orde	er modal	Fifth orde	r modal
(kg/m^3)	Component	Joint	Component	Joint	Component	Joint	Component	Joint	Component	Joint
6800	0.3968	5.3680	0.4442	3.2979	1.2495	12.9766	3.2438	0.0534	4.6074	76.0748
7800	0.3968	5.3679	0.4442	3.2792	1.2492	12.9766	3.2438	0.0533	4.6073	76.0689
8300	0.3968	5.3678	0.4442	3.2968	1.2495	12.9766	3.2438	0.0533	4.6073	76.0656

它是反映测力系统整机振动强度的重要指标,应变 片在天平中的所在位置 A1, A2, A3, A4 如图 6 所示。 由于测力系统所测得力指的是飞行器模型重心处的 集中力,这是因为做飞行器飞行动力学分析时需要 将其看成是刚体,并将面力形式的气动力等效成作 用在飞行器重心处的集中力。风洞测力试验的目的 是给出飞行器模型在各种飞行条件下其重心处所受 的集中力,基于此在设计时给予了飞行器模型较高 的刚度,尽量让其传力特性接近于刚体的传力特性, 所以,可以将飞行器模型近似成一个刚体,因此在飞 行器模型重心处的XYZ方向依次施加0~400Hz的正 弦扫频激励力。通过计算,飞行器模型重心在笛卡 尔坐标系中的位置如表12所示。由于飞行器模型的 重心并不在飞行器上,因此将重心沿X,Y,Z方向投 影至飞行器模型上,如图7中的A,B,C三点。分别在 此三点处施加幅值为1kN,激振频率为0~400Hz的 简谐力,其中A点施加X方向的激振力,B点施加Y方 向的激振力,C点施加Z方向上的激振力,对测力系 统进行整机谐响应分析,并提取天平中各应变片粘 贴位置的位移幅频特性曲线,对比优化前后天平中 各应变片的位移幅频特性曲线如图8所示,由于篇幅 限制,本文只选取了A1处X方向、A2处Y方向、A3处 Z方向与及A4处Z方向的位移幅频特性曲线作为展 示。在图8(a),(d)中w分别表示应变计粘贴处A1~ A4沿各自的激振力方向做简谐振动时的幅值,单位 为m。

通过对图 8 的观察发现,优化后天平所有应变片 A1,A2,A3,A4处的位移幅频特性曲线的幅值要比优 化前有明显的降低。采用优化前后 A1,A2,A3,A4处 的位移幅频特性曲线与横坐标轴(频率)所围成面积 的改变量来描述位移幅频特性曲线的综合改变程 度,计算公式如(8)所示。其中 S_1 , S_2 分别表示优化 前后位移幅频特性曲线与横坐标轴(频率)所围成的 面积, Δ 表示优化前后测力系统中 A1,A2,A3,A4处 位移幅频特性曲线的综合改变程度。基于公式(8) 计算出 A1,A2,A3,A4 在 X,Y,Z方向的位移幅频特性 曲线综合改变程度如表 13 所示,从中分析发现,A1, A2,A3,A4处沿 X,Y,Z方向优化后的位移幅频特性曲 线幅值比优化前均降低了15%以上,由此可以说明, 优化后测力系统整机动态性能较优化前得到明显的 改善。

$$\Delta = \frac{S_1 - S_2}{S_1} \times 100\%$$
 (8)

从表11可以看出,结合部优化后各阶模态频率 比优化前都有明显的增大,其中第一阶模态频率提 高达到16.7%。

Table 10	Optimization	scheme	of join	t

The number of optimization scheme	Strain balance– Aircraft /MPa	Strain balance– Support /MPa
1	0.6	0.6
2	0.6	9.0
3	0.6	5.0
4	5.0	0.6
5	5.0	5.0
6	5.0	9.0
7	9.0	0.6
8	9.0	5.0
9	9.0	9.0

Fig. 6 Paste position of foil strain gauge

Fig. 7 Projection of exciting force point

Table 11	Comparison between	each order natural fr	equency of force-me	easuring system befor	re and after optimization
----------	--------------------	-----------------------	---------------------	-----------------------	---------------------------

	First–order modal/Hz	Second order modal/Hz	Third order modal/Hz	Fourth order modal/Hz	Fifth order modal/Hz
Before optimization	37.7	42.8	69.7	121.6	132.9
Optimized	44.0	46.9	78.1	125.6	149.8
Change rate/%	16.7	9.6	12.1	3.3	12.7

Fig. 8 Displacement amplitude frequency characteristic curve of strain gauge A1, A2, A3, A4 comparison between force-measuring system before and after optimization

Table 12	te of venicle model		
X/mm	Y/mm	Z/mm	
2613.420	-110.252	0.027	
Tabel 13 Degree of amplitude-frequency response curv change between force-measuring system before and after optimization (%)			

	optimization (70)				
Item	A1	A2	A3	<i>A</i> 4	
X	15.84	15.68	15.91	15.82	
Y	15.56	15.57	15.53	15.41	
Ζ	15.74	15.68	15.88	15.53	

5 结 论

通过对结果分析,可以得出以下结论:

(1)测力系统整机应变能密度分布分析发现:结合部处的应变能密度要远大于其余零部件,而应变能密度越大代表该处刚度越薄弱,说明对结合部进行动态特性优化能有效地改善整机动态特性,同时也说明结合部的动态特性对整机的动态特性有重要的影响。

(2)以飞行器模型-天平,天平-支架结合部中的 接触面压为优化变量对测力系统进行动态特性优 化,对比优化前后测力系统前五阶固有频率可以发 现:优化后测力系统各阶固有频率相较于优化前有 明显的提高,最高提高了16.7%。对优化前后的测力 系统进行了谐响应分析,提取天平中应变片粘贴处 的位移幅频特性曲线并进行对比,发现优化后所有 应变片粘贴处的位移幅频特性曲线幅值相较于优化 前均有明显的降低,均降低了15%以上,由此说明测 力系统整机动态特性得到了较好的改善,从而验证 了所提出的基于结合部优化的整机动态特性优化方 法的可行性与有效性。

参考文献:

- [1] 乐嘉陵.吸气式高超声速技术研究进展[J].推进技术,2010,31(6):641-649. (LE Jia-ling. Progress in Air-Breathing Hypersonic Technology [J]. Journal of Propulsion Technology, 2010, 31(6):641-649.)
- [2] 刘伟雄,谭 宇,毛雄兵,等.一种新运行方式脉冲 燃烧风洞研制及初步应用[J].实验流体力学,2007, 21(4):59-64.
- [3] 王振锋,白菡尘,李向东.脉冲燃烧风洞点式油流技术在压缩拐角流动显示中的应用[J].推进技术,2014,35(11):1455-1460.(WANG Zhen-feng, BAI Han-chen, LI Xiang-dong. Application of Oil Flow Vi-

- [4] 梁 鉴,张卫国,王勋年,等.4m×3m风洞无人机模型振动抑制系统研制[J].实验流体力学,2007,21
 (4):65-70.
- [5] Capone F J, Igoe W B. Reduction of Wind-Tunnel-Model Vibration by Means of a Tuned Damped Vibration Absorber Installed in the Model[R]. NASA TM-1968.
- [6] 佘重禧,陈卫东,邵敏强.跨声速风洞测力模型的降
 阶及[H_{*}]减振控制[J].噪声与振动控制,2014,34
 (1):67-71.
- [7] 王 学,陈陆军,黄 勇,等.低速风洞模型振动主动控制仿真研究[J].振动与冲击,2014,33(5):14-19.
- [8] 刘 巍,毕晓丹,贾振元,等.风洞模型主动抑振器
 的设计与实验[J].光学精密工程,2015,23(10):
 2895-2901.
- [9] 陈卫东,邵敏强,杨兴华,等. 跨声速风洞测力模型 主动减振系统的试验研究[J]. 振动工程学报,2007, 20(1):91-96.
- [10] Balakrishna S, Houlden H, Butler D, et al. Development of a Wind Tunnel Active Vibration Reduction System [C]. Reno: 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.
- [11] Balakrishna S, Butler D, White E, et al. Active Damp-

ing of Sting Vibrations in Transonic Wind Tunnel Testing [C]. Reno: 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.

- [12] Rivers M B, Balakrishna S. NASA Common Research Model Test Envelope Extension with Active Sting Damping at NTF[C]. Atlanta: 32nd AIAA Applied Aerodynamics Conference, 2014.
- [13] Pereira J L. Development of an Active Damping System for Use with a Single Strut Mount [C]. San Diego: 54th AIAA Aerospace Sciences Meeting, 2016.
- [14] Li S, Liu D, Li Q. The Optimal Design of a Wind Tunnel Model Sting System Based on the CFD Method [J]. International Journal of Heat & Technology, 2015, 33 (4): 137-144.
- Zhang G P, Huang Y M, Shi W H, et al. Predicting Dynamic Behaviours of a Whole Machine Tool Structure Based on Computer-Aided Engineering[J]. International Journal of Machine Tools and Manufacture, 2003, 43 (7): 699-706.
- [16] 邓聪颖,殷国富,肖 红.基于能量分布的机床整机 动态特性优化方法[J].振动、测试与诊断,2015,35 (6):1083-1089.
- [17] 廖伯瑜,周新民,尹志宏.现代机械动力学及其工程 应用:建模,分析,仿真,修改,控制,优化[M].北 京:机械工业出版社,2004.
- [18] 学 良. 机械结合面动态特性及应用[M]. 北京:中 国科学技术出版社, 2002.

(编辑:张荣莉)