圆弧端齿联轴器定位机理研究*

刘 恒^{1,2},洪 杰¹,李垒栋²,邵伏永²

(1. 北京航空航天大学 能源与动力工程学院,北京 100191;2. 北京动力机械研究所,北京 100074)

摘 要:为了获得圆弧端齿联轴器定位精度设计和评估方法,对圆弧端齿联轴器定位机理进行了 理论研究。阐述了圆弧端齿联轴器采用的弹性平均定位法及其定位原理,分析了常见的弹性平均结构设 计误区,指出了影响弹性平均定位效果的关键因素。通过对圆弧端齿齿面受力分析,揭示了齿面结构参 数对定心效果的影响机理,提出了齿面结构参数满足定心要求的必要条件,并根据圆弧端齿联轴器结构 特点,构建了定位结构超静定系统力学模型。利用超静定系统平衡方程,结合变形协调条件,推导了圆 弧端齿联轴器轴向偏差和同心偏差计算方法,并给出了定位偏差计算算例。结果表明,装配力和弹性补 偿是弹性平均定位的关键要素,定位结构应保证接触面在装配力的作用下可以产生有效弹性补偿;联 轴器轴向偏差和同心偏差受单齿刚度影响,随着刚度弱化的相邻齿数增加,轴向偏差变化率有逐渐增大 趋势。

关键词:转子;圆弧端齿;联轴器;装配定位 中图分类号:V231.9 文献标识码:A 文章编号:1001-4055(2019)06-1382-07 DOI: 10.13675/j. cnki. tjjs. 180176

Positioning Mechanism of Curvic Coupling

LIU Heng^{1,2}, HONG Jie¹, LI Lei-dong², SHAO Fu-yong²

School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
 Beijing Power Machinery Research Institute, Beijing 100074, China)

Abstract: In order to obtain the design and evaluation methods of positioning precision of curvic coupling, the positioning mechanism of curvic coupling was theoretically studied. The elastically averaged positioning method and its positioning principle adopted by curvic coupling were expounded. Common misunderstandings in structure design by elastically averaged positioning were analyzed, and the key influencing factors were pointed out. Through the force analysis of curvic coupling, the mechanism of structural parameters of tooth surface effect on concentric positioning were revealed, the necessary conditions for centering requirements were pointed out, and the statically indeterminate model derived from curvic coupling was constructed according to its structure characteristics. By using balance equations of the statically indeterminate model and deformation compatibility condition, the coaxial and concentric deviation calculation methods of curvic coupling were derived, and the calculation examples of the location deviation were given. The results show that assembly force and elastic compensation are the key factors of elastically averaged positioning. Positioning structures should ensure that contact surfaces can produce effective elastic compensation under the action of assembly force; the axial deviation and concentric deviation of the coupling are affected by the stiffness of the single tooth, and the change rate of axial deviation gradually increased with the increase of the number of adjacent teeth.

Key words: Rotor; Curvic coupling; Couplings; Assembly positioning

 ^{*} 收稿日期: 2018-03-26; 修订日期: 2018-05-02。
 基金项目: 国防科技工业局技术基础科研 (JSZL2016204B102)。
 通讯作者: 刘 恒,博士生,高级工程师,研究领域为转子动力学。E-mail: h-liu@foxmail.com

1 引 言

现代航空燃气涡轮发动机转子常采用带有圆弧 端齿联轴器的拉杆结构,拉杆依次穿过轮盘和轴段, 采用螺母紧固,将各级轮盘和轴段组合在一起形成 转子结构系统,如WZ16/Ardiden-3C高压转子、WZ8 涡轴发动机高压转子等。为了实现转子结构系统动 平衡需求,转子连接结构需要满足高精度装配定位 要求,其定位精度不但影响转子装配质量,而且影响 转子的动力学特性。

装配定位法分为运动学支承约束定位法和弹性 平均定位法^[1]。运动学支承约束定位通过自由度精 确控制零件间相互关系^[2],而弹性平均定位法利用工 程材料内在的弹性,通过误差平均提高精度^[3]。在设 计连接结构时,至少应满足运动学支承约束设计原 则,但对于承受载荷的可重复装配结构连接界面,可 采用更多的约束,通过弹性平均实现精确定位^[4]。弹 性平均定位是一种过约束定位,定位面内设有大量 按照一定次序排列的定位特征,形成的约束个数大 于定位结构所需限制的自由度个数。遍布于一定范 围内的大量定位特征在装配时受力并产生弹性变 形^[5],使单个定位特征产生的误差通过特征数量被平 均,有效补偿定位误差^[6-7]。

"弹性平均"一词由 Strong 于 1951 年首次提出^[8], 此后一段时间内鲜有公开文献,近年来国内外学者 开展一些研究^[9-11]。Slocum等^[12]在两个硅晶片上采 用氢氧化钾分别腐蚀出棱锥和凹槽,并施加一定载 荷使二者接触变形,测量结果表明,装配定位精度可 以达到亚微米级。Slocum^[4]在介绍运动学支承约束 定位设计理论和应用的综述中,将五种定位方法的 重复定位精度进行了对比,指出弹性平均约束定位 具有微米级定位精度。杨友东等[13]介绍了端齿盘误 差平均效应原理,指出端齿盘的分度精度不但与制 造精度有关,而且与端齿盘齿数和齿的弹性误差补 偿效应有关,根据端齿盘加工精度、齿数、材料、测量 条件等因素给出了端齿盘分度精度计算经验公式。 安虎平等[14]在分析车削对刀法的基础上提出了圆分 度误差的封闭性原理,推演了圆分度误差封闭性的 数学关系式,给出了圆分度误差真值的计算方法。 Davidson 等^[15]对多个圆弧端齿连接结构相互连接产 生的转子装配累积误差问题,提出了利用零件轴向、 径向跳动实测误差使转子跳动达到最小值的虚拟装 配优化算法,对丰富采用圆弧端齿连接多级转子定 位精度研究手段具有积极意义。

圆弧端齿定位基于弹性平均原理,两个相互啮 合的端齿盘在轻微接触时会因齿面制造误差在某些 齿面间产生轻微干涉或微小间隙,当两端齿盘受轴 向压力紧密贴合时,各齿面的弹性变形使制造误差 被平均^[7],可以获得比单个齿位置精度更高的定位精 度^[16]。圆弧端齿联轴器多个齿面同时接触,还具有 承载能力强、结构紧凑的特点^[17]。圆弧端齿联轴器 广泛应用于航空燃气涡轮发动机转子结构系统各零 部件之间的连接。由于缺少对圆弧端齿定心原理的 理论研究,在设计和评估端齿连接精度时,缺少必要 的理论方法,在处理因圆弧端齿定心偏差导致的转 子动力学问题时,缺少有效的改进手段,给圆弧端齿 联轴器设计和工程应用带来困难。

本文利用弹性平均原理阐述了圆弧端齿联轴器 定位结构特点,分析了齿面受力情况,建立了定位结 构力学模型,提出了定位偏差计算方法,并给出了定 心偏差计算算例,系统地研究了圆弧端齿联轴器的 定位机理,为圆弧端齿联轴器定位结构设计和定位 精度评估提供了有效手段。

2 圆弧端齿定位

阐述弹性平均定位法及其定位原理,分析弹性 平均结构设计误区,指出影响弹性平均定位效果的 关键因素,提出圆弧端齿定位偏差定义。

2.1 弹性平均原理

在制造过程中,加工误差不可避免,定位面内各 定位特征不同程度的偏离理论位置,一般将定位特 征偏离理论位置的最大值作为其加工误差。如果采 用运动学支承约束法定位,依靠较少的定位特征对 连接结构的6个自由度进行约束,那么连接结构的定 位误差不会小于单个定位特征的加工误差,示意图 如图1所示。如果采用弹性平均定位,在装配力作用 下,各定位特征相互贴合,随着装配力的增大,接触 面发生弹性变形,各定位特征之间的误差差异逐渐 减小,连接结构的定位精度随之提高。

Fig. 1 Kinematic couplings^[18]

如图2所示,一个刚性平板被刚度分别为k1,k2,

 k_3, k_4 的4个弹簧支撑,初始平衡位置平板两侧的高度 为 h_1 和 h_2 。对平板施加向下的作用力F,力的作用点 位于平板刚心附近但不与刚心重合。在力的作用 下,弹簧被压缩,平板向下移动后到达新的平衡位 置,平板两侧高度变为 h'_1 和 h'_2 。为了简化计算,设弹 簧刚度 $k_1=k_2=k_3=k_4=k$,弹簧间距为l,力F的作用点距 弹簧 k_1 的距离为m,根据力的平衡方程、力矩平衡方 程和变形协调条件,可以得到

$$\dot{h_2} - \dot{h_1} = h_2 - h_1 + \frac{3F(3l - 2m)}{10kl}$$
 (1)

可见,当m>1.5l时,存在 $h'_2-h'_1$ 小于 h_2-h_1 。可以证明,当4个弹簧刚度不同时,也能够找到合适的力作用点,使 $h'_2-h'_1$ 小于 h_2-h_1 。

采用弹性平均原理的连接结构在装配力作用下 产生弹性变形,单个特征的定位误差被平均,实现了 连接结构定位精度的提升。

在采用弹性平均原理设计的定位结构中,主要 有两种结构形式。第一种结构不依靠装配力产生弹 性变形,而是通过定位特征加工误差引起的结构不 匹配强迫定位特征发生弹性变形,如图3(a)所示。 这类定位结构虽然采用了弹性平均原理,但在应用 中有一定的局限性:加工误差需满足装配要求,即 "装得上";加工误差和定位特征刚度要满足精度要 求。加工误差受装配要求制约,定位特征刚度也不 能过大,产生弹性变形的装配力同时受到加工误差 和定位特征刚度的影响,这对定位结构设计提出了 更高要求。第二种结构对定位特征施加了全约束, 当装配力较小时,仅有弹性补偿面发生变形,加工误 差被平均,但当装配力达到一定数值时,其他不参与 弹性补偿的配合面开始接触并发生变形,引起局部 刚度增大,当装配力继续增大时,弹性补偿面变形增 量减小,弹性平均效果减弱,如图3(b)所示。

装配力和弹性补偿是弹性平均定位的关键因素,各定位特征在装配力作用下产生的可用于补偿 定位误差的弹性变形大小直接影响弹性平均定位效 果。在设计定位特征时,应根据装配力的施加方式 合理设置接触面,保证接触面在装配力的作用下可 以产生弹性变形;还要根据连接结构特点、定位形 式,合理约束定位特征的自由度,尽量避免因定位特 征被完全约束而限制了弹性补偿面的变形。

Fig. 3 Elastically averaged couplings with weakened structures

2.2 定位偏差定义

在工程应用中,一般采用专用端齿量规测量圆 弧端齿联轴器的装配精度,测量方法如图4所示。利 用量规对零件跳动直接测量能够判定零件及端齿的 加工质量,但跳动的是综合误差,无法直接反应圆弧 端齿的同心或同轴定位偏差。

根据圆弧端齿的功能和定心原理,提出圆弧端 齿定位偏差的定义:

(1)轴向偏差,一对相互啮合的圆弧端齿凸齿齿 盘和凹齿齿盘轴线之间的夹角。

(2)同心偏差,一对相互啮合的圆弧端齿凸齿齿 盘和凹齿齿盘轴线与节平面交点的距离。

(3)分度偏差,一对相互啮合的圆弧端齿凸齿齿 盘和凹齿齿盘周向分度误差。

分度偏差不是本文关注的重点,因此本文仅对 前两种偏差进行研究。

Fig. 4 Curvic coupling testing method^[19]

3 定位结构力学模型

分析圆弧端齿联轴器齿面受力情况,提出满足 弹性平均原理要求的齿面参数要求,基于超静定结 构系统构建圆弧端齿定位结构力学模型。

3.1 齿面受力分析

取一对相互啮合的凹齿齿槽和凸齿为研究对象,不考虑摩擦力的影响,对齿面进行受力分析,如图5所示。

Fig. 5 Reaction force of concave tooth

过圆弧端齿轴段回转中心做回转面w,与凹齿齿 面相交于长度为l的直线段u,节平面^[20]与凹齿齿面 相交于长度为s的圆弧v,定义u与v的交点为P。

设P点处应力为 σ ,其方向垂直于齿面并指向齿面的回转轴,n,t分别为 σ 沿齿高和圆弧w切向的分量。直线段u上的线应力 F_{a} 可以表示为

$$F_{u} = \int \sigma \mathrm{d}l \tag{2}$$

沿圆弧*v*对线应力*F*_{*u*}积分,得到作用于齿面上应 力的合力为

$$F = \int_{v} F_{u} \mathrm{d}s \tag{3}$$

将 F_u 沿n方向和t方向分解,分别记为 F_u 和 F_u , 对 F_u 沿图6中圆弧曲线v积分,得到齿面合力在节平 面内的分量为

$$F' = \int_{v} F_{ut} \mathrm{d}s \tag{4}$$

在节平面上,将齿槽两侧圆弧v的圆心相连,以 线段中点为原点,建立图6所示齿面局部坐标系,其x 轴位于圆心连线上,y轴指向圆弧端齿轴段的回转中 心。F[']沿y方向的分量可表示为

$$F_{y}' = \int F_{u} \sin\theta ds \tag{5}$$

$$\mathrm{d}s = R_{\mathrm{c}}\mathrm{d}\theta \tag{6}$$

式中 θ 为 F_{ut} 偏离x轴正方向的弧度, θ_1 , θ_2 为 θ 的 边界,且 $\theta_1 < \theta_2$, R_c 为节锥圆半径^[20],则

$$F'_{y} = R_{c} \int_{\theta_{1}}^{\theta_{2}} F_{ut} \sin\theta d\theta \qquad (7)$$

在弧长v内部,应力 F_{u} 沿弧长v的变化梯度很

小[21],将其看作常量,因此

$$F'_{y} = F_{u} R_{c} \cos\alpha \int_{\theta_{1}}^{\theta_{2}} \sin\theta d\theta \qquad (8)$$

式中α为压力角^[20]。

当 |θ₁| = |θ₂|时,上式右侧积分等于零,即齿面合 力在圆弧端齿轴段回转半径方向上的分量为零,单 个齿在该方向上无法依靠装配力产生有效变形补 偿,导致圆弧端齿无法依靠弹性平均原理提高定心 精度。

在圆弧端齿结构设计过程中,应合理设计齿面 结构参数,避免齿面受力分量为零的现象,即在图 6 所示局部坐标系中,圆弧曲线v不应关于局部坐标x轴对称,使式(7)右侧定积分上、下限满足 $|\theta_1| \neq |\theta_2|$ 。

Fig. 6 Local coordinates of a concave tooth

为了实现上述要求,在设计圆弧端齿时,一般使 分度圆直径(大径)和小径位于局部坐标系*x*轴同侧, 并取二者的算术平均等于切点半径的2倍,即齿宽被 切点平分。

对于采用经典结构设计方法^[20]的圆弧端齿,此时的齿面合力F作用点位于切点半径与节锥圆交点 处且垂直于齿面并指向齿面回转轴,单侧齿面所受 合力沿局部坐标y向即联轴器径向分量为

$$F_{y}' = F \cos\alpha \sin\frac{\chi}{4} \tag{9}$$

$$\chi = \frac{2\pi}{N} \tag{10}$$

式中 χ 为分度角,N为圆弧端齿齿数。

定义η为单侧齿面受力沿y向即联轴器径向分 量占齿面合力的比例,则

$$\eta = \cos\alpha \sin\frac{\pi}{2N} \tag{11}$$

在设计圆弧端齿联轴器时,可以把η>0作为齿面 参数满足定心要求的必要条件。

3.2 超静定结构模型

采用弹性平均原理实现定位功能的结构具有多 个接触面或连接特征,结构内部存在多余的约束,是 一个超静定系统。

假设圆弧端齿的各个齿是独立的,在装配力的

作用下,圆弧端齿的凸齿和凹齿相互啮合,单个凹齿 齿槽约束了凸齿的5个自由度,仅留有沿径向自由 度,反之亦然,如图7所示。实际上,圆弧端齿定位是 多个齿面相互啮合共同作用的结果,齿面轴向分力、 径向分力与周向分力分别参与同轴、同心、分度定位 补偿。

Fig. 7 DOF of one pair of teeth

圆弧端齿的齿面不可避免的存在制造误差,一 对圆弧端齿开始啮合时,一些齿面最先接触,另一些 齿面之间存在微小的缝隙;逐渐施加轴向压力后,在 力的作用下,已经接触的齿面发生变形,存在缝隙的 齿面缝隙逐渐缩小,直至齿面相互接触并发生变形。 从未施加轴向压力的初始接触状态到施加轴向力后 的最终接触状态,齿面的接触状态^[22]变化过程可分 为3类,如表1所示。

接触状态变化过程的不同,反应了接触刚度的 不同。种类1的接触刚度与齿面轮廓和材料有关;种 类2的齿面间间隙消除但未发生接触变形,接触刚度 很小;种类3是种类1与种类2的综合。

Table 1	Changing	process o	f contact	status
Table 1	Changing	process o	1 contact	status

Туре	Original	Final
1	Near contact	Sliding or sticking
2	Far open	Near contact
3	Far open	Sliding or sticking

由于多齿接触问题的复杂性,本文不对接触问题进行深入研究,仅讨论接触刚度差异或者连接长度差异对圆弧端齿定位偏差的影响,对圆弧端齿连接结构进行简化。把圆弧端齿轴段的基体看作圆形刚体,把凹齿齿面与凸齿齿面之间的连接看作是由相互协调的二力杆并联构件形成的弹性连接,简化结构如图8所示。

下方圆形刚体固支,上方圆形刚体由二力杆支 撑在下方刚体上,各二力杆的长度相等但刚度不同。 因此,圆弧端齿定位偏差计算问题可以描述为:在图 8所示的超静定结构中,当在上方圆形刚体上作用一 个竖直向下的集中力F时,求上方刚体的倾角和圆心 *X*,*Y*向位移。

Fig. 8 Statically indeterminate structure

4 定位偏差计算方法

忽略刚体倾斜对刚体上点的X,Y坐标影响,将 三维超静定问题分解为两个二维超静定问题进行 研究:

(1)求各二力杆变形沿Z坐标分量引起的刚体倾角。

(2)求各二力杆变形在*XOY*平面内引起的刚体 位移。

4.1 结构的刚心

在力的作用下,超静定系统内的两个刚体发生 微小的相对运动,为了求解超静定系统的平衡方程, 首先计算结构的刚心。

为了简化计算,设图8(a)中上方圆形刚体半径 为R,图8(b)中二根杆的刚度相同,取并联刚度为k_i。 在XOY平面中,设刚心位于点S(a,b),如图9所示。

Fig. 9 Coordinates of center of stiffness

在自由状态下,超静定系统不受外力作用,结构 平衡方程的矩阵形式为

1

$$\left(RT - XI_{2 \times z}\right)KI_{z \times 1} = \mathbf{0}$$
(12)

式中

$$\mathbf{R} = \begin{bmatrix} R & \\ & R \end{bmatrix} \tag{13}$$

$$T = \begin{bmatrix} 1 & \cos\frac{2\pi}{N} & \cdots & \cos\frac{2\pi(N-1)}{N} \\ 0 & \sin\frac{2\pi}{N} & \cdots & \sin\frac{2\pi(N-1)}{N} \end{bmatrix}$$
(14)

$$\boldsymbol{K} = \begin{bmatrix} k_1 & & \\ & k_2 & \\ & & \ddots & \\ & & & k_z \end{bmatrix}$$
(15)

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{a} & \\ & \boldsymbol{b} \end{bmatrix}$$
(16)

$$I = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$
(17)

求解矩阵 X 即可得到刚心在 XOY 平面内的坐标。在外力 F 的作用下,上方刚体将绕刚心 S 转动。

4.2 轴向偏差

在图9中,设力的作用点坐标为(*m*,*n*),结构的 平衡方程为

$$\begin{cases} \left(RT - XI_{2 \times Z}\right) K\delta = M \\ I_{1 \times Z} K\delta = F \end{cases}$$
(18)

$$\boldsymbol{\delta} = \begin{bmatrix} \delta_1 & \delta_2 & \cdots & \delta_n \end{bmatrix}^{\mathrm{T}}$$
(19)

$$\mathbf{M} = \begin{bmatrix} F(m-a) & F(n-b) \end{bmatrix}^{\mathrm{T}}$$
(20)

式中 δ_i 是 k_i 对应二力杆发生的弹性变形量在Z方向的分量。

上方刚体二力杆支点P_i的初始坐标为

$$P_{i} = \left[R\cos\frac{2\pi(i-1)}{N}, R\sin\frac{2\pi(i-1)}{N}, 0 \right] \quad (21)$$

刚体发生运动后,点Pi坐标变为

$$P'_{i} = \left[R\cos\frac{2\pi(i-1)}{N}, R\sin\frac{2\pi(i-1)}{N}, -\delta_{i} \right] (22)$$

在N个支点中取三点构建向量,则平面法向量为

$$\boldsymbol{n} = P_{1}' P_{2}' \times P_{1}' P_{3}' \tag{23}$$

因各点共面,则存在

$$\mathbf{n} \cdot P_1' P_i' = 0$$
 (*i* \neq 1,2,3) (24)

二力杆并联结构与上方刚体共形成N个支点, 可以构建N-3个等式,作为刚体运动前后的变形协 调条件。将式(18)系统平衡方程与式(24)变形协调 条件联立,构成N阶线性方程组,解得δ并将其带入 式(23)得到刚体转动后的平面法向量n。n与Z坐标 的夹角是二力杆变形沿Z坐标分量引起的刚体倾角, 其与初始倾角作差后即得到轴向定位偏差。

4.3 同心偏差

根据变形协调关系,可以得到

S

$$=\delta \tan \varphi$$
 (25)

式中 $\delta_i \neq k_i$ 对应二力杆发生的弹性变形量在径向的分量, $\delta_i \approx X, Y$ 方向的合成后可得刚体位移,其与初始位移作差后即得到同心偏差。

5 算 例

选用齿数 N=32/36, 跨径节数 27/29, 压力角 α= 40°的圆弧端齿为计算对象, 进行齿面径向分力计算 和定位偏差计算。

5.1 齿面径向分力计算

采用式(11)计算齿面受力径向分量占齿面合力 的比例。当齿数 N=32, 跨径节数为 27 时,为η= 3.75%;当齿数 N=36, 跨径节数为 29 时, η=3.34%。采 用考虑无摩擦接触有限单元法的计算结果分别为η= 3.63% 和η=3.24%, 该结果与理论计算结果相符。

5.2 定位偏差计算

设二力杆并联刚度 k_i的基准值为 8×10²N/mm,二 力杆基准长度为 3mm。采用随机算法模拟圆弧端齿 加工误差的随机分布,以二力杆长度沿 Z向的变化量 δ_i表示,分别取值2.13,2.13,2.12,2.11,2.10,2.08, 2.06,2.04,2.01,1.99,1.97,1.95,1.93,1.91,1.90, 1.90,1.89,1.90,1.90,1.91,1.93,1.95,1.97,1.99, 2.01,2.04,2.06,2.08,2.10,2.11,2.12,2.13,单位为 1μm。施加压力前,上方刚体与 Z轴的夹角为2.09× 10⁻⁵rad,施加竖直向下的50N作用力后,上方刚体与 Z轴的夹角变为1.59×10⁻⁵rad,轴向偏差减小,定位精 度得到提升。

5.3 刚度弱化的影响

分别计算仅有1组、相邻2组、相邻3组、相邻4 组二力杆的并联刚度各为基准值10%时,在50N力 的作用下,刚体轴向偏差的变化。如图10所示,随着 刚度弱化结构个数的增加,轴向偏差θ成线性增大, 且变化率有逐渐增大的趋势。

6 结 论

通过对圆弧端齿联轴器弹性平均定位原理的研 究,揭示了齿面结构参数对定心效果的影响机理,提 出了连接结构定位偏差计算方法,得到结论如下: (1)装配力和弹性变形补偿是圆弧端齿利用弹 性平均原理实现定位的关键要素,在设计定位特征 时,应确保接触面在装配力的作用下可以产生有效 弹性变形。

(2)在圆弧端齿结构设计过程中,应合理设计齿面结构参数,把单侧齿面受力沿联轴器径向分量不为零作为齿面参数满足定心要求的必要条件。

(3)圆弧端齿联轴器轴向偏差和同心偏差受单齿刚度影响,随着刚度弱化的相邻齿数增加,轴向偏差变化率有逐渐增大趋势。

致 谢:感谢国防科技工业局技术基础科研基金资助。

参考文献:

- [1] Slocum A H. Precision Machine Design [M]. Englewood Cliffs: Prentice-Hall, 1992.
- [2] 陈晓娟,吴文凯,傅学农,等.精确约束支承结构在 惯性约束聚变装置中的应用与研究[J].机械科学与 技术,2009,28(8):1111-1120.
- [3] De Vicq A N. Precision Engineering: An Evolutionary View [J]. Precision Engineering, 1990, 12(3): 180– 181.
- Slocum A H. Kinematic Couplings: A Review of Design Principles and Applications[J]. International Journal of Machine Tools & Manufacture, 2010, 50(4): 310-327.
- [5] Willoughby P J, Slocum A H. Precision Connector Assembly Using Elastic Averaging [C]. Orlando: ASPE Annual Conference, 2004.
- [6] Rowe K G, Dickrell D J, Sawyer W G. Interrupted Measurement Repositioning Using Elastic Averaging [J]. Tribology Letters, 2015, 59(1): 1-3.
- [7] Willoughby P. Elastically Averaged Precision Alignment
 [D]. Cambridge: Massachusetts Institute of Technology, 2005.
- [8] Strong J. New Johns Hopkins Ruling Engine [J]. Journal of the Optical Society of America, 1951, 41(1): 3– 15.
- [9] Jones R V. Some Uses of Elasticity in Instrument Design
 [J]. Journal of Scientific Instruments, 1962, 39 (5): 193-203.
- [10] Slocum A H. Kinematic Couplings for Precision Fixtur-

ing, Part 1: Formulation of Design Parameters[J]. Precision Engineering, 1988, 10(2): 85-91.

- [11] Slocum A H. Donmez A. Kinematic Couplings for Precision Fixturing, Part 2: Experimental Determination of Repeatability and Stiffness [J]. Precision Engineering, 1988, 10(3): 115-122.
- [12] Slocum A H, Weber A C. Precision Passive Mechanical Alignment of Wafers[J]. Journal of Microeletromechanical Systems, 2003, 12(6): 826-833.
- [13] 杨友东,谷振华.基于误差平均效应分度装置的分度 精度的研究[J].应用科技,2002,29(7):1-3.
- [14] 安虎平,刘 昊.高精度零件加工中的误差平均法原 理及其应用[J].机械制造,2010,48(12):57-59.
- [15] Davidson J K, Wilcox L E. Minimizing Assembly Runout in Turbo-Machines Made with Curvic Couplings[J]. Journal of Engineering for Power, 1976, (1): 37-46.
- [16] Slocum A H, Chiu M A, Hobbs E D, et al. Kinematic and Elastically Averaged Joints Connecting the Past, Present and Future [C]. Japan: International Symposium on Ultraprecision Engineering and Nanotechnology, 2013.
- [17] Jiang X, Zhu Y, Hong J. Development and Validation of Analytical Model for Stiffness Analysis of Curvic Coupling in Tightening [J]. Journal of Aerospace Engineering, 2014, 27(4): 1-14.
- [18] Culpepper M L. Design of Quasi-Kinematic Couplings
 [J]. Precision Engineering, 2004, 28(3): 338-357.
- [19] HB 20046-2011,圆弧端齿检验[S].
- [20] 刘 恒,洪 杰,邵伏永,等.圆弧端齿结构设计和 加工工艺研究进展与展望[J].推进技术,2018,39
 (4):1-10. (LIU Heng, HONG Jie, SHAO Fu-yong, et al. Progress and Prospect of Structural Design and Processing Technology of Curvic Coupling[J]. Journal of Propulsion Technology, 2018, 39(4):1-10.)
- [21] 黄 发.圆弧端齿结构设计方法研究[D].南京:南 京航空航天大学,2013.
- [22] Liu S, Ma Y, Zhang D, et al. Studies on Dynamic Characteristics of the Joint in the Aero-Engine Rotor System
 [J]. Mechanical Systems and Signal Processing, 2012, 29(5): 120-136.

(编辑:朱立影)